日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。
研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。
本文為「經濟部產業技術司科技專案成果」
因應國際法規變動趨勢的營業秘密管理建議 資訊工業策進會科技法律研究所 2024年06月24日 因應技術進步導致資訊的存取與分享更加容易,營業秘密侵權爭議也隨之增長,綜觀國際政策推動或許多跨國智財專家均逐漸重視營業秘密爭議相關議題,並論及營業秘密相關法規趨勢、訴訟經驗、建議企業可執行的營業秘密管理做法等,以下將綜整相關趨勢與專家觀點並提出我國企業建議。 壹、法規變動趨勢 從國際趨勢以觀,各國針對「競業禁止」規定,有逐漸對其嚴格審查與進行法規監管的趨勢,而這也使得透過限制性條款避免機密資訊外洩的難度提高,企業多轉而透過營業秘密管理來加強防護。 一、競業禁止 本文列舉了近期美國與英國對於競業禁止法規監管的趨勢。 (一)美國將從聯邦層級禁止「競業禁止」條款 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於今年,2024年4月23日推出一項最終規定「Non-Compete Clause Rule[1]」,該規則將針對除了高級管理人員以外之員工,使僱主與員工之間已簽訂競業禁止協議無效,並禁止未來僱主與員工簽訂競業禁止合約。 (二)英國擬立法限制「競業禁止」之最高法定期限 英國目前的競業禁止相關限制係基於英美法,以法院的個案判決及既判例來執行。英國政府於2020年12月4日至2021年2月26日期間向公眾進行諮詢,並就諮詢意見之政府回覆於2023年發布報告[2],英國政府在該報告中提出,就目前國際實務上競業禁止條款之執行期間除了美國部分州已直接被禁止外,多半未進行太多限制,如德國最高為24個月、義大利最長可達三至五年,而英國政府提出其擬將在議會時間允許的情況下提出立法領先引入「最多三個月[3]」之上限,對於競業禁止條款進行限制。 二、合理保密措施 承上所述,基於「競業禁止」條款的效力可能因為政策、法規變動或在不同國家的規定不同而導致已簽署之競業禁止條款失去效力、尚未簽署之契約禁止再簽署競業禁止條款或只允許在受有限制之情況下簽署等,企業透過此類限制性條款來避免機密資訊外洩的難度提高,使的企業多轉而透過其他日常營業秘密管理措施來加強防護,及證明企業有落實營業秘密的「合理保密措施」之法律要件。 以美國加州為例,該州多年前就禁止「競業禁止」約定,故當地企業早已轉往透過建置營業秘密政策和保護措施來加強防護。 貳、具體營業秘密管理措施之建議 一、合理保密措施之目的 合理保密措施除了作為補足無法使用限制性條款(競業禁止條款)之替代管制措施具有「預防營業秘密洩漏之效果」以外;更具有在營業秘密侵權發生後,訴訟上舉證之用。許多智財實務專家表示,無論是在哪一國法規的管轄下,權利人共通性的困難多在於訴訟的舉證上,因此專家建議企業應留存營業秘密管制措施之執行紀錄以作為將來涉訟時舉證之用。 二、營業秘密管理之具體作法 參照實務上專家的建議,本文彙整將實務上被推薦之具體營業秘密管理做法[4]羅列如下: (一)確立並可以識別營業秘密範圍 對於企業而言,首先應識別並記錄出營業秘密(機密)範圍,才能明確管制措施的範圍,並透過機密的標示(例如浮水印)來使員工能夠認知到接觸的資訊為公司重要的營業秘密。 (二)監控 針對下載、複印、數據傳輸行為或者其他可能包含機密資訊之公司設備等行為公司應進行監控。 (三)使用行為管制 公司應限縮傳播範圍(包含禁止員工通過電子郵件將資訊發送到個人電子郵件或將機密文件攜出公司等);並於不使用時妥善存放保管並上鎖或設置密碼管控。 (四)人員管制 員工作為營業秘密管控機制重要的一環,專家建議應對員工進行教育訓練(告知營業秘密重要性或提供有關如何識別和保護機密資訊的培訓);與相關人員(員工、承包商、合作單位)簽署保密契約(confidentiality agreements)明確定義機密資訊之範圍以及禁止未經授權的使用與揭露;設立離職員工管控機制(包含離職面談、保存相關設備、甚至如果員工可能進入競爭對手工作,企業可評估是否進一步請合格第三方進行鑑識或取證員工身上是否攜帶機密資訊等,以作為未來若涉訟之舉證)等。 參、評析 綜上所述,企業或許已經理解建立合理保密措施並留存作為訴訟時舉證之證據的重要性,並了解些許零散的管理做法,但可能產生管理措施如何才算是完善的疑問,為了提供企業更全面的管理建議,資策會科法所創意智財中心以其在智財領域之研究與實務經驗的積累發布「營業秘密保護管理規範」[5](下稱管理規範)將管理措施透過十個單元建立PDCA管理循環。 經查,上述國際法規變動下實務專家討論之營業秘密管理措施均包含在管理規範內,如「(一)確立並可以識別營業秘密範圍」會對應到管理規範第4單元「營業秘密的確定」章節;「(二)監控」會對應到管理規範之第5單元「營業秘密的使用管理」及第7單元「網路與環境設備管理」;「(三)使用行為管制」會對應到管理規範之第5單元「營業秘密的使用管理」;「(四)人員管制」會對應到管理規範之第6單元「員工管理」與第8單元「外部活動管理」。 管理規範除了提供更加多元完善的管理做法(如定義出的營業秘密應進行機密分級、設定保密期限建立管理清單;除了管制流通、複製行為,後端的銷毀或使用紀錄留存、預警措施之建立也很重要;對於員工的管控不僅是離職時,更是從入職時就有風險需要管控;或者更後端的爭議處理機制、監督與改善機制之建立等)以外,更重要的是,管理規範納入了企業應考量的相關法律風險,以「(二)監控」之建議為例,管理規範第6.3.2條進一步要求應對員工進行「宣導」,告知員工「會監控其使用營業秘密行為並保存相關電磁紀錄」,此規定對於企業而言十分重要,因為若未進行告知,可能會因為侵害員工的隱私權,違反刑法妨害秘密罪以及通訊保障及監察法之違法監察通訊罪,而使雇主被判刑。 由此可知,企業在建立營業秘密合理保密措施之相關機制時,亦需要注意措施的完善與合法性,企業除了可參考管理規範系統性建立營業秘密管理機制外,亦可以此管理規範做為檢視自身管理措施符合性之依據,進而促進企業有效落實營業秘密管理。 [1]Federal Trade Commission, FTC Announces Rule Banning Noncompetes (2024), https://www.ftc.gov/news-events/news/press-releases/2024/04/ftc-announces-rule-banning-noncompetes (last visited May 15, 2024). [2]Consultation outcome Measures to reform post-termination non-compete clauses in contracts of employment, GOV.UK, https://www.gov.uk/government/consultations/measures-to-reform-post-termination-non-compete-clauses-in-contracts-of-employment#full-publication-update-history (last visited Jun. 19, 2024). [3]同前註,引述原文:「The government will introduce a statutory limit on the length of non-compete clauses of 3 months and will bring forward legislation to introduce the statutory limit when parliamentary time allows.」。 [4]Q&A: Trade secret disputes, Financier Worldwide Magazine, Financier Worldwide Magazine, https://www.financierworldwide.com/qa-trade-secret-disputes (last visited Jun. 05, 2024). [5]<營業秘密保護管理規範>,財團法人資訊工業策進會科技法律研究所網站,https://stli.iii.org.tw/publish-detail.aspx?no=72&d=7212(最後瀏覽日:2024/06/14)。
歐盟資通安全局(ENISA)提出資通安全驗證標準化建議歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)(舊稱歐盟網路與資訊安全局European Union Agency for Network and Information Security)於2020年2月4日發布資通安全驗證標準化建議(Standardisation in support of the Cybersecurity Certification: Recommendations for European Standardisation in relation to the Cybersecurity Act),以因應2019/881歐盟資通安全局與資通安全驗證規則(簡稱資通安全法)(Regulation 2019/881 on ENISA and on Information and Communications Technology Cybersecurity Certification, Cybersecurity Act)所建立之資通安全驗證框架(Cybersecurity Certification Framework)。 受到全球化之影響,數位產品和服務供應鏈關係複雜,前端元件製造商難以預見其技術對終端產品的衝擊;而原廠委託製造代工(OEM)亦難知悉所有零件的製造來源。資通安全要求與驗證方案(certification scheme)的標準化,能增進供應鏈中利害關係人間之信賴,降低貿易障礙,促進單一市場下產品和服務之流通。需經標準化的範圍包括:資訊安全管理程序、產品、解決方案與服務設計、資通安全與驗證、檢測實驗室之評估、資通安全維護與運作、安全採購與轉分包程序等。 ENISA認為標準化發展組織或業界標準化機構,在歐盟資通安全之協調整合上扮演重要角色,彼此間應加強合作以避免重複訂定標準。目前有三組主要國際標準可構成資通安全評估之基礎: ISO/IEC 15408/18045–共通準則與評估方法:由ISO/IEC第1共同技術委員會(JTC1)及第27小組委員會(SC27)進行重要修訂。 IEC 62443-4-2–工業自動化與控制系統之安全第4-2部分:作為工業自動化與控制系統元件的技術安全要求。 EN 303-645–消費性物聯網之資通安全:由歐洲電信標準協會(ETSI)所建立,並與歐洲標準委員會(CEN)、歐洲電工標準化委員會(CENELEC)協議共同管理。 然而,資通訊產品、流程與服務種類繁多,實際需通過哪些標準檢驗才足以證明符合一定程度的安全性,則有賴驗證方案的規劃。為此,ENISA亦提出資通安全驗證方案之核心構成要件(core components)及建構方法論,以幫助創建歐盟境內有效的驗證方案。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
基因改造 70g胖老鼠減重成為40g中研院今天發表一份研究成果:利用「基因改造」,成功的將七十公克的胖老鼠減重到四十公克,而且沒有什麼副作用。未來經過人體實驗,將有機會成為人類減肥的最新方法。 研究團隊發現,脂肪細胞活性與細胞內的粒腺體含量有關,而「粒腺體」就相當於細胞的「火力發電廠」,專門幫助代謝熱量、並轉化為能量供體內使用。當脂肪細胞含有大量粒線體的時候,就可以自行代謝體內所堆積的油脂、健康瘦身。計劃主持人、分子生物研究所副研究員李英惠解釋:利用藥物刺激,可以誘發體內的一種「Gs蛋白」,在老鼠胚胎上進行基因改造,或是後天以藥物餵食老鼠,活化體內GS蛋白質,透過各種方式,証明GS蛋白質的確可以增加脂肪細胞中粒腺體含量和活性,慢慢的代謝掉細胞內堆積的油脂。研究團隊還意外發現,改造後的老鼠,不但不容易發胖,而且平均壽命還增加了20%。 目前動物實驗已經證明:體內具有這種改造過的脂肪細胞,不但不容易發胖,壽命也可以增長。未來經過人體實驗,將有可能成為人類「健康減肥」的最新方法。