原預計於2017年3月2日生效實行的美國聯邦通訊委員會(Federal Communication Commission,FCC)的寬頻客戶隱私規定(Broadband Consumer Privacy Rules),委員會於2017年3月1日宣布暫停該規範效力,並與聯邦貿易委員會(Federal Trade Commission,FTC)發表共同聲明。
為保障資料安全(data security),聯邦通訊委員會於2016年10月27日,以寬頻網路服務提供者(broadband Internet Service Providers,ISPs)及其他電信營運商為規範對象,要求須給予客戶有更多選擇去決定自身資料如何被分享和使用,除將ISP所蒐集得使用及分享的資料分為三類,建立客戶同意要件,尚設立新的提醒要件及保密性違反之通知等。該新的隱私規範試圖與聯邦貿易委員會的規範做區隔,除管制對象不同,管制架構上,聯邦貿易委員會要求業者在蒐集及利用個人資訊時,須符合公平資訊實施原則(Fair Information Practice Principles,FIPPs)之準則(guidelines):通知(notice)、選擇(choice)、讀取(access)、安全(security)。
通過之際產生的爭議,包含聯邦通訊委員會有無管制權限,及實行後可能與聯邦貿易委員會管制架構並行而造成疊床架屋、混淆大眾等的問題;此外,聯邦通訊委員會收到眾多請願,要求重新考慮該規範之實行。請願理由在於該規範之實行將會造成寬頻網路服務提供者及其他電信營運商為了要遵循規範將承受巨大的成本與負擔,並且這些成本與負擔與公眾利益相違背,將會造成不可回復的損害。
在接受請願討論後,聯邦貿易委員會做出暫停實施的決定,認為有關保護資料安全的規範要件需要重新思考,其理由在於:(1)消費者若受到兩種不同的隱私管制方式,會破壞消費者對於線上隱私安全一致性的期待;(2)不應使寬頻網路服務提供者及其他電信營運商遭受重大且不必要的遵循成本。
聯邦通訊委員會也與聯邦貿易委員會共同發表聲明,其聲明提及:聯邦通訊委員會與聯邦貿易委員會皆有責保護美國消費者的線上隱私,然而最好的管制方法,應該是透過一個全面性且一致性的架構。資訊隱私之保護不應當有因管制對象不同而有差別性,況且其中差異僅有專業人士才能辨別出,就消費者保護來說,並行兩道不同管制只會造成混淆,毫無益處。這也是為何當聯邦通訊委員會片面剝奪聯邦貿易委員會的管制權限而引發批評聲浪。對於寬頻提供者應保護隱私與資料安全之要求,應回歸至聯邦貿易委員會,由於國家對網際網路空間的管制,上網行為應該要適用一樣的規則,並且受到同樣的專責機關管制。除此之外,聯邦通訊委員會與聯邦貿易委員將共同合作致力於協調對寬頻提供者的隱私規範,該規範將會同所有與數位經濟相關的公司遵循的標準。線上世界技術中立(technology-neutral)的隱私框架之一致性,方能對消費者帶來最佳利益。
本次聯邦通訊委員會迅速暫停實施的隱私規範,顯現出美國對於保障隱私管制的重視性極高,美國針對網路生態中的不同公司,寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等;網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等,將會有何種一致性的資料安全規範,值得持續關注。
在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
歐盟部長理事會通過第16輪對俄羅斯制裁規定,持續打擊規避管制行為歐盟部長理事會(The Council of the European Union)於2025年2月24日通過第16輪對俄羅斯的制裁規定,以因應俄羅斯持續滿三年非法侵略烏克蘭的行為。第16輪制裁針對俄羅斯經濟中具有系統重要性的部門,例如能源、貿易、運輸、基礎建設和金融服務加強管制,並且加強打擊規避制裁的行為。 第16輪制裁中有關出口管制的黑名單交易對象、物流與金流的措施概述如下: 1.實體名單更新與反規避 (1)制裁名單新增管制理由,包括制裁支持不安全油輪(unsafe oil tankers)營運者。 (2)將74艘貢獻俄羅斯能源收入的船隻,列入制裁名單。 (3)對53家支持俄羅斯軍工複合體(military-industrial complex)或從事規避制裁的新公司(其中包括俄羅斯以外國家的34家公司),實施針對性的出口限制。 (4)實體名單新增83個實體(包括48名自然人及35個法人實體),例如支持俄羅斯軍工複合體、積極從事規避制裁、俄羅斯加密資產交易所,以及海事領域的公司。 2.軍民兩用項目出口管制 (1)違反化學武器公約,用於生產氯化苦(chloropicrin)和其他用作化學武器的防暴劑(riot control agents)的兩用化學前驅物(precursor)。 (2)用於製造武器的電腦數控(Computer Numerical Control,即CNC)工具機相關軟體,以及俄羅斯軍隊在戰場上駕駛無人機時使用的視訊遊戲控制器。 (3)鉻礦石及化合物。 3.金融業措施 (1)將13家提供專門金融訊息服務的金融機構列入實體名單。 (2)對於使用俄羅斯中央銀行金融訊息系統(Financial Messaging System of the Central Bank of Russia)規避歐盟制裁者,在交易禁令(transaction ban)中增加3家銀行。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
美國商務部產業安全局公布「確保聯網車輛資通訊技術及服務供應鏈安全」法規預告美國商務部產業安全局(Bureau of Industry and Security, BIS)於2024年9月23日公布「確保聯網車輛資通訊技術及服務供應鏈安全」(Securing the Information and Communications Technology and Services Supply Chain: Connected Vehicles)法規預告(Notice of Proposed Rulemaking, NPRM),旨在透過進口管制措施,保護美國聯網車供應鏈及使用安全,避免國家受到境外敵對勢力的威脅。 相較於BIS於2024年3月1日公告之法規制定預告(Advanced Notice of Proposed Rulemaking, ANPRM)意見徵詢中的討論,本次法規預告明確指出受進口管制的國家為中國及俄國,並將聯網車輛資通訊技術及服務之定義,限縮於車載資通訊系統、自動駕駛系統及衛星或蜂巢式通訊系統,排除資訊洩漏風險較小的車載操作系統、駕駛輔助系統及電池管理系統。法規預告中定義三種禁止交易型態:(1)禁止進口商將任何由中國或俄國擁有、控制或指揮的組織(下稱「中俄組織」)設計、開發、生產或供應(下稱「提供」)的車輛互聯系統(vehicle connectivity system, VCS)硬體進口至美國;(2)禁止聯網車製造商於美國進口或銷售含有中俄組織所提供的軟體之聯網整車;(3)禁止受中俄擁有、控制或指揮的製造商於美國銷售此類整車。 本次法規預告中亦提出兩種例外授權的制度:在特定條件下,例如年產量少於1000輛車、每年行駛公共道路少於30天等,廠商無須事前通知BIS,即可進行交易,然而須保存相關合規證明文件;不符前述一般授權資格者,可申請特殊授權,根據國安風險進行個案審查。其審查重點包含外國干預、資料洩漏、遠端控制潛力等風險。此外,為提升供應鏈透明度並檢查合規性,BIS預計要求VCS硬體進口商及聯網車製造商,每年針對涉及外國利益的交易,提交符合性聲明,並附軟硬體物料清單(Bill of Materials, BOM)證明。BIS針對此規範是否有效且必要進行意見徵詢,值得我國持續關注。