原預計於2017年3月2日生效實行的美國聯邦通訊委員會(Federal Communication Commission,FCC)的寬頻客戶隱私規定(Broadband Consumer Privacy Rules),委員會於2017年3月1日宣布暫停該規範效力,並與聯邦貿易委員會(Federal Trade Commission,FTC)發表共同聲明。
為保障資料安全(data security),聯邦通訊委員會於2016年10月27日,以寬頻網路服務提供者(broadband Internet Service Providers,ISPs)及其他電信營運商為規範對象,要求須給予客戶有更多選擇去決定自身資料如何被分享和使用,除將ISP所蒐集得使用及分享的資料分為三類,建立客戶同意要件,尚設立新的提醒要件及保密性違反之通知等。該新的隱私規範試圖與聯邦貿易委員會的規範做區隔,除管制對象不同,管制架構上,聯邦貿易委員會要求業者在蒐集及利用個人資訊時,須符合公平資訊實施原則(Fair Information Practice Principles,FIPPs)之準則(guidelines):通知(notice)、選擇(choice)、讀取(access)、安全(security)。
通過之際產生的爭議,包含聯邦通訊委員會有無管制權限,及實行後可能與聯邦貿易委員會管制架構並行而造成疊床架屋、混淆大眾等的問題;此外,聯邦通訊委員會收到眾多請願,要求重新考慮該規範之實行。請願理由在於該規範之實行將會造成寬頻網路服務提供者及其他電信營運商為了要遵循規範將承受巨大的成本與負擔,並且這些成本與負擔與公眾利益相違背,將會造成不可回復的損害。
在接受請願討論後,聯邦貿易委員會做出暫停實施的決定,認為有關保護資料安全的規範要件需要重新思考,其理由在於:(1)消費者若受到兩種不同的隱私管制方式,會破壞消費者對於線上隱私安全一致性的期待;(2)不應使寬頻網路服務提供者及其他電信營運商遭受重大且不必要的遵循成本。
聯邦通訊委員會也與聯邦貿易委員會共同發表聲明,其聲明提及:聯邦通訊委員會與聯邦貿易委員會皆有責保護美國消費者的線上隱私,然而最好的管制方法,應該是透過一個全面性且一致性的架構。資訊隱私之保護不應當有因管制對象不同而有差別性,況且其中差異僅有專業人士才能辨別出,就消費者保護來說,並行兩道不同管制只會造成混淆,毫無益處。這也是為何當聯邦通訊委員會片面剝奪聯邦貿易委員會的管制權限而引發批評聲浪。對於寬頻提供者應保護隱私與資料安全之要求,應回歸至聯邦貿易委員會,由於國家對網際網路空間的管制,上網行為應該要適用一樣的規則,並且受到同樣的專責機關管制。除此之外,聯邦通訊委員會與聯邦貿易委員將共同合作致力於協調對寬頻提供者的隱私規範,該規範將會同所有與數位經濟相關的公司遵循的標準。線上世界技術中立(technology-neutral)的隱私框架之一致性,方能對消費者帶來最佳利益。
本次聯邦通訊委員會迅速暫停實施的隱私規範,顯現出美國對於保障隱私管制的重視性極高,美國針對網路生態中的不同公司,寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等;網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等,將會有何種一致性的資料安全規範,值得持續關注。
美國衛生及公共服務部(Department of Health and Human Services, HHS),於2020年6月16日提出「曲速行動(Operation Warp Speed)」,目標是在2021年1月前,提供3億劑具安全有效性的COVID-19疫苗,給所有美國人民使用。參與行動的政府夥伴,包括國家衛生研究院(National Institutes of Health, NIH)、食品藥品監督管理局(U.S. Food and Drug Administration, FDA)、疾病預防管制中心(Centers for Disease Control and Prevention);與多家製藥公司包含嬌生、默克、輝瑞、Moderna、AstraZeneca等,簽訂研究製造及保證收購疫苗的競爭型補助協議,直接由政府需求主導疫苗藥劑的研發、生產與銷售,藉此滿足國家防疫的戰略需求。 曲速行動為政府部門及公私夥伴間的合作計畫,依據美國國會通過《新冠病毒援助、救濟和經濟安全法》(Coronavirus Aid, Relief, and Economic Security, CARES Act),計畫補助資金達100億美元,其中超過65億美元用於生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA),30億美元用於NIH研究。公私夥伴合作項目包括:「加速研發新冠病毒藥物及疫苗計畫」(Accelerating COVID-19 Therapeutic Interventions and Vaccines, ACTIV)、「快速診斷技術計畫」(Rapid Acceleration of Diagnostics Tech program, RADx)等。 曲速行動從100多種疫苗中先行選出14種候選疫苗,由美國政府補助,進行早期臨床實驗,再分次篩選出最具潛力者,進行大規模檢測。透過公私夥伴合作,不僅成功帶動製藥廠商積極研發,也協助候選廠商間彼此競爭、提升製藥能力,進一步反饋研究經驗給最終產出的疫苗成果。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
落實綠色供應鏈 台灣廠商尚待加強歐盟推動的有毒物質禁制令( Restriction of Hazardous Substances, RoHS )自今( 2006 )年 7 月後開始啟動,國內多家 IT 廠商如主機板、液晶螢幕等業者均表示產品符合 RoHS 規範,政府提供的資料也指出,台灣大約八成的供應商和製造商符合 RoHS 規範,但是依照綠色環保產品行銷業者的觀察,實際數據遠低於此,應該只有五成不到。 所謂的 RoHS ,係明列自 2006 年 7 月後,製程、設備及材料處理研發禁止使用 6 種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。如果一旦抽驗發現有毒物質,產品即可能遭受召回、高額罰款或者長期法律訴訟。 廠商所謂的「符合」還有很多可議的空間,主要原因有兩種:首先製造商在取得供應商提供的原物料時,也許前者的確不含有毒物質,但是在製程、運送過程中,原物料仍有被污染的可能性,例如有鉛和無鉛產品共用一條生產線。然而製造商但憑供應商提供的品質文件就聲稱終端產品符合了 RoHS 規範。 其次,即使是供應商表示原物料符合 RoHS 規範,也還有待商榷,因為這必須判定供應商的原物料送審時,是以混測還是均質檢測。所謂的混測就是把包含兩三種不同原料的產品一併送測,這時候即使單一原料含有有毒物質,但在和其他物質含量平均後就無法檢測出來。均質檢測則就是每個原料都單獨出來檢驗。由於後者的成本高出許多,因此國內供應商多以混測方式送審,使得檢測結果可信度並非絕對。 RoHS 對將大量產品輸出歐洲市場的台灣 IT 產業影響深遠,根據經濟部技術處所提供的資料,據估計將有近 3.5 萬家廠商、高達新台幣 2,446 億元的產值將受到衝擊。基於此原因,經濟部技術處於去( 2005 )年七月啟動「寰淨計畫( G 計畫)」,結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品。儘管政府推動甚殷,國內供應商的確在前年開始準備,不過要確實符合 RoHS 之規範精神,而非僅是形式上符合,仍有待政府與業者共同努力。
以「公私夥伴關係(PPP)」發展科技之作法近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。 如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。