加拿大隱私專員呼籲提升加拿大人在美國之隱私保護

  加拿大隱私專員表示,其國人在美國雖享有一些隱私保護,但該保護主要係依賴不具法律效力之行政協議,因而相當脆弱。

  隱私專員Daniel Therrien在一封致加拿大司法部長、公共安全部長及國防部長的公開信中,請求加拿大政府官員們向其對口之美國政府部門,要求藉由將加拿大列入美國國會去(2016)年通過之「司法賠償法案(Judicial Redress Act of 2015)」指定國家清單,以強化對其國人之隱私保護。隱私專員並表示,國人關切並請加拿大隱私專員辦公室(OPC)針對美國總統唐納.川普(Donald John Trump)所發布之行政命令進行影響評估,因其將排除非美國公民及合法永久居民隱私權法中關於個人可資識別資料之保護。

  倘若加拿大能如同歐洲聯盟(European Union)及26個歐洲國家一般,於今年初時被列入前述指定清單,則其公民即可透過美國法院之強制執行,獲得隱私保障。此外亦可同時強化行政協議,如:美加邊境安全行動計劃(Canada-U.S. Beyond the Border Action Plan)及其聯合隱私聲明原則(Joint Statement of Privacy Principles)給予加拿大人之保護。

  聯合隱私聲明原則涵括12項,其重要者有:

1.善盡一切合理努力,確保個人資料之正確性,以及後續請求查閱及更正錯誤之權利。

2.個人資料適當安全維護措施。

3.蒐集個人資料之相關性及必要性。

4.當事人認為其隱私受侵害時,得受繼有國家當局之賠償。

5.公務機關之有效監督。

  縱算美國隱私權法自始即從未適用於加拿大人,且前開行政命令亦未改變現況,該命令仍突顯出「在南邊境上對加拿大人個人資料保護的顯著差距」。 「作為一個長期盟友以及密切的貿易夥伴,加拿大應要求被給予和那些經指定列入清單之歐洲國家相同程度之保護。」

相關連結
你可能會想參加
※ 加拿大隱私專員呼籲提升加拿大人在美國之隱私保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7763&no=57&tp=1 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

Common sense並非 Obviousness的代名詞

  美國聯邦第二上訴巡迴法院於去年12月9日做出判決,維持先前佛羅里達州南區地方法院對於 Perfect Web Tech. 公司之專利第6,631,400號(以下簡稱專利400號)做出該專利無效之簡易裁決。第二上訴巡迴法院在 Perfect Web Technologies Inc. v. InfoUSA Inc. 一案中對於判斷一項專利的顯而易見性 (obviousness) 上,“常識”(common sense)所代表的意義做出解釋。   此案最初係由 Perfect Web Tech 控訴InfoUSA 侵害其所持專利400號,該專利為 “一種管理大批 (bulk) 電子郵件傳送到各不同鎖定目標的方法”。專利400號包含了4道程序,第一至第三道程序包含將大批的電子郵件寄送到一鎖定目標對象的群組,並計算當中寄送成功的數量。第四道程序則為重覆程序一至三,直到寄送成功的數量超過原設定的最低成功數量。對此InfoUSA向法院提出裁定專利400號無效的簡易裁決,而地方法院以 “程序一至三為先前技術 (prior art),程序四則僅為合乎邏輯的常識做法”而准予該請求並裁定專利400號無效。   第二上訴巡迴法院維持原判的理由在於專利400號不符合於KSR案中關於 “顯而易見性”的判斷原則。訴訟雙方皆同意程序一至三為先前技術,而法院認為程序四是 “常識”下的產物, “是一般人都顯然會去嘗試的結果”。Linn 法官更進一步指出像這樣的案子根本不需要專家證詞,只需用一般人的常識判斷即可。但是判決中亦同時聲明,若要援用 “常識”來判斷一項專利的顯而易見性,地院或專利審查官必須要能將判斷的依據解釋清楚以受公評。此判決結果意味著如果係爭的專利技術較為複雜,被告將必須要依賴有利的專家證詞以成功證實爭論的要點僅止於常識運用且具有顯而易見性。

美國FDA發佈食品安全現代化法(FSMA)之產品安全建議規則(PSPR)最終版

  在農產品業,食品安全在所有人的心中佔了極重要的位置。美國食品及藥物管理局(Food and Drug Administration,下稱FDA)在2015年9月發佈了食品安全現代化法(Food Safety Modernization Act;下稱FSMA)之產品安全建議規則(Produce Safety Proposed Rule;下稱PSPR)的最終版(final rule)。該規則的發布,預將使零售商尋找供應商的方向,轉變為以有遵守FSMA的供應商作為交易的對象。   PSPR主要是在規定人類消費之蔬果產品生長、繁殖、包裝、販售之規則。新增規範重點如下: 1. 農業用水(Agricultural Water):針對農業用水之品質標準、水質測試方式,作出規範。 2. 生物土壤改良(Biological Soil Amendments):對於改良土壤可能使用到之肥料或相關之微生物,作出規範。 3. 抽芽(Sprouts):對於植物在抽芽時相關預防微生物汙染、微生物測試,作出規範。 4. 馴養動物與野生動物(Domesticated and Wild Animals):針對在農場內放牧之動物,或用來幫助耕作動物之管理,作出規範。 5. 人員訓練、健康與衛生管理(Worker Training and Health and Hygiene):針對相關人員之教育訓練、衛生管理以及健康,作出規範。 6. 設備、工具與建築物(Equipment, Tools and Buildings):為了預防生產過程中可能遭受汙染之情況,對於硬體設備作出規範。   FSMA是美國第一個關於食品安全之立法,美國農業部(Department of Agriculture;USDA)為了讓零售商或中盤商更了解其自身對食品安全之需求以找尋適合之供應商,更預計在2016年春季推行集團優良農業作業準則前導計畫( Group Gap Pilot Program),提供第三方認證服務,以確認農產品所有之作業都有遵守FSMA及FDA之建議。

韓國未來創造科學部發表智慧資訊社會中長期計畫因應第四次產業革命

  2017年7月20日,韓國未來創造科學部發表智慧資訊社會中長期計畫(Mid- to Long-Term Master Plan in Preparation for the Intelligent Information Society)。為了因應第四次產業革命,韓國將面臨關鍵轉型,目標是成為智慧資訊社會,將人工智慧、物聯網(IoT)、雲端計算、大數據分析和移動平台,融入社會的各個面向。此外依據分析,至2030年智慧資訊社會的經濟價值估計將達到460萬億韓元,屆時絕大多數簡單重複的任務將自動化,進而消除大量的工作機會。但於此同時,也將在相關發展中的產業,創造新興就業空缺,如軟體工程和數據分析等。   韓國採取的相關措施,包括積極支持具前景的科技技術,培養創意人才、加強公私合作夥伴關係,實現韓國經濟、社會和其他有關制度所需的巨大轉型與變革。目標是在第四次產業革命中取得領導地位,為此制定智慧資訊社會中長期計畫,分為以下三大方向。   一、建構智慧IT的世界級基礎設施   發展並強化數據及網路的基礎設施,使其在全球市場上居於領導地位。   二、促進智慧IT在各產業的應用   將智慧IT技術活用於公共服務及私人部門,提高生產力、效率與國家競爭力。   三、積極改進並加強社會支援系統   透過教育改革、就業及福利服務等政策,包括培養創新人才,為社會結構改變及可能的負面衝擊作出準備,加強福利政策與社會安全網絡,以確保所有公民都能夠享受到智慧資訊社會的利益。

TOP