BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。
2017新版架構由原本的6章變為為10章,新架構如下:
新標準主要修改內容如下:
BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。
澳洲證券投資委員會(Australian Securities and Investments Commission, ASIC) 於2016年12月15日發布第257號法規指導(Regulatory Guide 257,RG 257)-在未持有AFS或信用執照的狀態下測試fintech產品與服務(Testing fintech products and services without holding an AFS or credit licence)。RG 257並包含澳洲的監理沙盒架構。重要內容如下: 1.有別於其他國家的監理沙盒需要申請方能適用,透過法規以及ASIC澳洲已經提供一些鬆綁機制,換句話說並不需要事先申請就可以取得監管沙盒鬆綁。例如非現金支付產品,包含儲值卡,以及某些國外交易服務。 2.ASIC的fintech 執照豁免見諸於ASIC Corporations (Concept Validation Licensing Exemption) Instrument 2016/1175 以及ASIC Credit (Concept Validation Licensing Exemption) Instrument 2016/1176。 3.ASIC也可個別提供客製化的執照豁免以促進產品或服務測試,個別豁免就比較接近其他國家的監管沙盒架構。 因此基本上,只要符合法定以及上述兩個instruments的規定,就可以自動取得監管沙盒的鬆綁,而無需另外申請,唯需「通知」ASIC,並提供相關資料。監理沙盒的適用期間為十二個月。但是如果不符法定以及Instrument 2016/1175、Instrument 2016/1176的規定,也可以另外向ASIC申請客製化的豁免。 目前可適用Instrument 2016/1175的金融服務包含: •掛牌的澳洲證券; •簡易管理的投資架構; •存款產品; •某些一般的保險商品;以及 •「授權存款取用機構(authorised deposit-taking institutions,ADIs)」發行的支付產品。 唯須注意的是,Instrument 2016/1176允許有限的信用協助,但是不得提供借貸。另外,使用監理沙盒的fintech企業最多只能有100個零售客戶,以有效控制風險。
美國華府行政管理與預算辦公室頒布Open Data政策備忘錄之執行指導綱要美國華府行政管理與預算辦公室(Office of Management and Budget)頒布執行M-13-13 Open Data政策備忘錄之指導綱要(Supplemental Guidance on the Implementation of M-13-13 “Open Data Policy-Managing Information as an Asset”),目的在於澄清問題及提供執行細節以協助政府部門實施執行命令第13642號及M-13-13 Open Data政策備忘錄。透過實踐本指導綱要,各政府部門將能確保用以盤點、管理及開放資料的基礎設施之完備,進而開創因開放資料所產生之價值。 資料在依據本綱要進行盤點時,主管機關必須一併予以分級,其近用層級(Access Levels),區分為公開(Public)、限閱(Restricted Public)、非公開資料(Non-public)。資料公開前會經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,始釋出予大眾。 針對備忘錄之五項執行要求,本指導綱要即分為五項對應指導,介紹如下: 1.建立及維運大型資料盤點目錄:目的在使聯邦政府部門建立清楚且完整之資料資產目錄,而在製作盤點目錄後,必須持續改進、維護資料,並以擴展、豐富、開放三種面向來評估檢視盤點目錄之成熟度。 2.建立及維運公開資料清單:為增進資料查詢之容易度及可用性,各部門須篩選上述資料盤點目錄中屬於公開層級或可以被公開之資料,並建立及發布公開資料清單,作為盤點目錄之子目錄,使民眾得以知悉現有公開資料,及接續地將被公開之資料。各部門基於裁量權,亦可決定是否列入限閱或非公開資料資產,使民眾能知悉該筆資料之存在以及近用該資料之程序。 3.建立用戶參與資料釋出程序:此程序將提供資料用戶參與促進資料釋出及認定釋出之優先順序。由關鍵的資料用戶來幫助聯邦政府認定資料資產價值,而被認定最高價值之資料將優先、快速釋出。 4.當資料無法釋出時,須以文件證明:政府部門必須確認資料經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,才能公開資料。當認定資料涉及違反上述規範時,則須以文件證明其諮詢該政府部門中所設之法律顧問單位(Office of General Counsel)或同類單位後之決定,再依據三種資料近用資層級予以分類。 5.指導綱要中要求列出各部門應該負責管理資訊之窗口。 原定11月1日為完備上述基礎設施建置之最後期限,然為因應美國自10月1日起聯邦政府關門,特寬限延期至11月30日;在11月30日後,各部門將於每季報告執行進展,而部門開放資料之績效將被列為跨部門優先追蹤對象。
Apple Inc. 因販售個人資料面臨團體訴訟三位來自Massachusetts州的州民,以Apple Inc.(下稱Apple)為被告,於該州地方法院提起團體訴訟。其等主張在2012年至2013年間,透過信用卡於Massachusetts州Apple的零售商店購買該公司相關商品時,Apple有過度蒐集與不當利用個人資料之情形。據Apple網站指出,消費者得選擇透過信用卡的方式購買商品,然若選擇信用卡方式付費,必須提供個人相關識別訊息,包含完整的郵政編碼,如果提供不完整,Apple將不會允許使用消費者使用信用卡方式付費;且Apple亦在網站上聲稱保有允許提供該類訊息予提供產品和服務的合作夥伴,或得利用該類訊息幫助行銷的權利。故原告等透過信用卡消費後,收到不必要的市場行銷資訊;又Apple將原告等人可識別的個人資訊銷售第三方公司,並在未顧及原告等權益下,挪用了該具有經濟價值的個人可識別資訊。基於上述理由,原告等請求至少500萬元美金之損害賠償,其中不包含訴訟費用以及相關利息等其他費用。 依據Mass. Gen. Laws ch. 93 §105 規定,不論是個人、商號、合夥、公司或一切營業人,當接受信用卡交易模式時,並不能要求消費者填寫任何個人可識別的資訊。若法院同意原告們的訴求,Apple將因「不公平且欺騙之貿易行為」而被認定違反該州法律而必須負擔賠償責任,且Apple也將被要求停止蒐集全州的個人可識別資料。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。