簡析德國自動駕駛與車聯網發展策略

刊登期別
第29卷第04期,2017年04月
 

本文為「經濟部產業技術司科技專案成果」

※ 簡析德國自動駕駛與車聯網發展策略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7830&no=57&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
歐盟著作權指令實行至今未達促進網路服務成長之目的

  歐洲委員會委託荷蘭「阿姆斯特丹大學資訊法律學院」及倫敦「皇后瑪莉智慧財產中心」,就歐盟2001年通過之著作權指令於各會員國實行之情況與對市場之影響進行評估,並於2007年2月完成評估報告。該份報告指出,歐盟著作權指令就推動線上內容服務成長之目的僅達成少部分目標,若歐盟未來可能成為網路服務之單一市場,則本指令必須加以修改。   報告指出,部分指令內容的欠缺明確,留給各會員國極大的裁量空間於內國法排除規範之訂定與限制規範之研擬,此一情況實為該指令功能未能彰顯之重要因素。且因各會員國幾乎可完全自由決定欲採用之制度,將嚴重影響跨疆界網路內容服務的建構,尤其調和規範之欠缺,直接影響關於市場玩家提供跨疆界網路服務相關法律的明確性。而由於規範的不確定性,則迫使使用者於面臨跨疆界著作之使用時,需與每位權利人就使用受保障著作的範圍進行協商,導致交易成本之增加。另外,該指令之規範亦轉變了科技法律之態樣,推翻舊有權利平衡,而創造出偏向權利人、遠離著作使用者的規範模式,擴張的重製權賦予權利人幾乎完全的控制權力,而此一權利實非於實體世界權利人所能專享。   此份報告建議,為達成會員國規範具某程度的一致性,未來宜就該指令可附加之限制,明列簡短的必要禁止規範,各國亦可依據自身需求附加進一步的排除條款。同時建議歐洲各國可參考德國強制將數位權力管理資訊、著作使用範圍與特性於產品上附加說明之模式,作為未來規範訂定之參考。

美國證券交易委員會成員發佈「數位資產之投資契約」指導文件

  鑒於「監管不確定性」係加密貨幣市場發展之一大阻礙,2018年間,美國證券交易委員會(United States Securities and Exchange Commission, SEC)成員威廉.希曼(William Hinman)表示,SEC打算發布指導方針,協助市場參與者確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,須受到相關證券法規監管。據此,2019年4月3日,SEC公布指導文件:「數位資產之投資契約分析框架」(Framework for “Investment Contract” Analysis of Digital Assets)。惟須注意的是,該文件為內部成員之意見,不具正式法律效力,不得拘束SEC企業財務局或委員會本身,而僅屬一種指導。   美國法上對於「投資契約」的認定標準,為聯邦最高法院建立的Howey Test,即基於合理的獲利預期、且該獲利來自他人的創業或經營努力、而投資金錢於一共同事業者,成立投資契約,進而構成證券。因此,為確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,該文件特別針對「Howey Test」中的「基於合理的獲利預期」、「該獲利來自他人的創業或經營努力」,提出具體判斷標準,並輔以「其他相關考量因素」,供市場參與者作一參考: (一)基於合理的獲利預期:例如「數位資產持有人可否分享企業收入或利潤,或從數位資產的增值獲得利潤」、「持有人現在或未來得否在次級市場交易」等具體標準; (二)該獲利來自他人的創業或經營努力:例如「營運上是否去中心化」、「數位資產持有人,是否期待發行人執行或管理必要工作」等具體標準; (三)其他相關考量因素:包含「數位資產之設計和執行,旨在滿足使用者需求,而非投機買賣」、「數位資產的價值,通常會保持不變或隨時間減損,理性持有人不會『以投資為目的』而長期持有」、「數位資產可作為真實貨幣之替代物」等等,文件中指出,只要這些其他相關考量因素越明顯,越不符合上開「基於合理的獲利預期且該獲利來自他人的創業或經營努力」。   文件中亦強調,SEC將參酌個案事實,綜合上開各項標準,為客觀之認定。

德國針對企業資訊安全及資料保護相關法律提出建議文件

  德國經濟及能源部於2018年3月8日為企業資訊安全保護措施建議及資料保護、資料所有權相關法規提出建議文件,協助中小企業提升對於組織及特別領域中的資安風險之意識,並進一步採取有效防護檢測,包括基本安全防護措施、組織資安維護、及法規,並同時宣導德國資料保護法中對於資安保護的法定要求。   資通訊安全及其法規係為企業進行數位化時,涉及確保法的安定性(Rechtssicherheit)之議題。加強資安保護,除可增進銷售及生產力,並使商業貿易間有更大的透明度和靈活性,和創造新的合作信賴關係。因此相關網路內容服務提供商應符合法律要求,提供相關服務,並使共享資料得到完善的保護。例如:應如何保護處理後的資料?如何執行刪除個人資料權利?各方如何保護營業秘密?如果資料遺失,誰應承擔責任?唯有釐清上述相關等問題時,方能建立必要的信任。而在德國聯邦資料保護法,歐盟一般個人資料保護法、歐盟網路與資訊安全指令等規範及相關法律原則,係為數位創新企業執行資安基礎工作重要法律框架。但是,由於數位化的發展,新的法律問題不斷出現,目前的法律框架尚未全面解決。例如,機器是否可以處理第三方資料並刪除或保存?或是誰可擁有機器協作所產生的資料?因此,未來勢必應針對相關問題進行討論及規範。鑑於日益網路化和自動運作的生產設備,工業4.0的IT法律問題變得複雜。一方面,需要解決中、大型企業的營業祕密,資料所有權和責任主題之實際問題,以促進相關數位化創新。另一方面,為了能夠推導出現實的法律規範,需要更多具體實施案例討論。   據研究顯示,企業家對產品責任問題,人工智慧使用,外包IT解決方案,及雲端計算等核心問題的新法規以顯示出極大的興趣,並進一步列入既有或規劃中研究項目。未來,政府將協助為所有公司在安全框架下展開數位計畫合作的機會,並充分利用網路的潛力,而中小企業4.0能力中心也將為中小型公司在數位化目標上提供IT法問題方面的支持。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP