隨著資料多元應用,大量個資可能被企業、組織等從銀行、線上零售業者傳輸到雲端、學術機構等,因此在跨境傳輸基礎上需要共同的監管制度,以利資料保護和隱私標準。英國科技產業協會(techUK)和英國金融協會(UK Finance)共同於2017年11月30日呼籲英國政府和歐盟應迅速採取行動,以利於繼續保護消費者和企業在英國退出歐盟(Brexit)後兩地跨境傳輸個資。
另外,在Dentons國際律師事務所提出關於歐盟與英國未來資料共享關係之聯合報告(No Interruptions: options for the future UK-EU data sharing relationship)中,techUK和UK Finance說明英國和歐盟雙方如何達成適當保護協議(adequacy agreement),英國政府亦於2017年8月發布個人資料交換和保護未來合作文件(The exchange and protection of personal data - a future partnership paper),將持續依一般資料保護規則(General Data Protection Regulation, GDPR)調整,而在過渡期間為企業提供監管確定性,而公司亦需重新考慮GDPR於2018年5月實施後相關替代機制,如企業自我約束規則(Binding Corporate Rules, BCRs)、標準契約條款(Standard Contractual Clauses, SCCs)等。由於英國2019年3月脫歐後,將不會直接適用GDPR,因此除非有新的安排,個資在歐盟傳輸仍可能受限,而需昂貴複雜替代機制,故仍應速採取行動:
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
中國將對幹細胞臨床研究及應用研擬管理規範為妥適管理中國幹細胞醫療產業,中國衛生部下令停止未經許可之幹細胞臨床研究和應用行為,並展開為期一年的幹細胞臨床研究和應用規範整頓工作。此期間分為「自查自糾」、「重新認證」和「規範管理」等階段。中國衛生部及國家食品藥品監督管理局(以下簡稱食品藥品監管局)辦公室於今年(2012年)1月6日發布一份名為《關於發展幹細胞臨床研究和應用自查自糾工作的通知》之部門規章,明白揭示於「自查自糾」階段各省、自治區及直轄市之衛生廳局及食品藥品監督管理局應如何辦理。 該通知中要求全國各級各類從事幹細胞臨床研究及應用之醫療機構及相關研究單位應依照《藥物臨床實驗質量管理規範》及《醫療技術臨床應用管理辦法》之規範進行自查自糾工作,如實總結並填寫幹細胞臨床研究和應用自查情況調查表,報告已完成或刻正進行之幹細胞臨床研究和應用活動;另外一方面,中國衛生部及食品藥品監管局及各省、自治區及直轄市將分別組成工作領導小組及工作組,制定自查自糾工作方案。針對尚未經批准之幹細胞臨床研究和應用,於通知文件中明白揭示應予停止;已經批准者,亦不得任意變更臨床試驗方案,或自行變更為醫療機構收費項目。值得注意者,為整頓對幹細胞臨床研究及應用之管理,並研擬符合國內需求之管理機制,直至今年7月1日前,相關主管機關將不受理任何申報項目。 中國截至目前為止,尚未針對幹細胞技術之臨床實驗或應用做成法規或政策,僅適用一般性藥品法規,相較於國際間先進國家屬相對鬆散。中國衛生部及食品藥品監管局於近日做成之通知文件顯示了中國政府開始對於幹細胞臨床實驗及應用之規範面向有所重視,針對其後續衍生之管理規範值得我們持續追蹤關切。
澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。 依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。 目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。 駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。
美國FDA計畫舉辦3D列印技術於醫療運用下之法制探討會議隨著3D印表機的價格日趨親民、3D列印設計檔案於網際網路交流越趨頻繁,以及預期3D列印技術在未來的應用會更加精進與複雜化,3D列印技術於醫療器材製造面所帶來的影響,已經逐漸引起美國食品藥物管理局(FDA)的關注。 在近期FDA Voice Blog posting中,FDA注意到使用3D列印所製造出的醫療器材已經使用於FDA所批准的臨床干預行為(FDA-cleared clinical interventions),並預料未來將會有更多3D列印醫療器材投入;同時,FDA科學及工程實驗辦公室(FDA’s Office of Science and Engineering Laboratories)也對於3D列印技術就醫療器材製造所帶來的影響進行調查,且CDRH功能表現與器材使用實驗室(CDRH’s Functional Performance and Device Use Laboratory)也正開發與採用電腦模組化方法來評估小規模設計變更於醫療器材使用安全性所帶來的影響。此外,固體力學實驗室(Laboratory of Solid Mechanics)也正著手研究3D列印素材於列印過程中對於醫療器材耐久性與堅固性所帶來的影響。 對於3D列印就醫療器材製造所帶來的法制面挑戰,在Focus noted in August 2013中,其論及的問題包含:藉由3D列印所製造的醫療器材,由於其未經由品質檢證是否不應將其視為是醫療器材?3D列印醫療器材是否需於FDA註冊登記?於網路分享的3D列印設計檔案,由於未事先做出醫療器材風險與效益分析,FDA是否應將其視為是未授權推廣等問題。 針對3D列印於醫療器材製造所帶來的影響,CDRH預計近期推出相關的管理指引,然FDA認為在該管理指引推出前,必須先行召開公聽會來援引公眾意見作為該管理指引的建議參考。而就該公聽會所討論的議題,主要依列印前、列印中與列印後區分三階段不同議題。列印前議題討論包含但不限於材料化學、物理特性、可回收性、部分重製性與過程有效性等;列印中議題討論包含但不限於列印過程特性、軟體使用、後製程序與額外加工等;列印後議題討論則包含但不限於清潔/多餘材料去除、消毒與生物相容性複雜度影響、最終裝置力學測定與檢證等議題。