英國資訊委員辦公室(Information Commissioner’s Office, ICO)於今(2019)年4月15日發布「合適年齡設計:網路服務行為準則」(Age appropriate design: a code of practice for online services)諮詢報告,針對18歲以下孩童使用網路服務所涉及個人資料之相關議題提出遵循標準,要求網路服務提供商應受遵循以保障孩童隱私資訊。
本次諮詢報告主要針對網路服務如何適當確保孩童個人資料,同時符合歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)以及《隱私及電子通訊規則》(Privacy and Electronic Communications Regulations, PECR),若網路服務提供商未依循該行為準則,將很難證明符合GDPR、PECR規定,ICO亦採取監管措施(regulatory action),包含警告、譴責、執行通知、罰款等。於諮詢報告中,臚列涉及個人資料事項,包括資料共享、地理定位(geolocation)、家長監控(parental controls)、輕推技術(nudge techniques)、默認裝置(default settings)、側寫(profiling)等多達16項遵循標準,其中輕推技術引發抑制網路科技發展、過度監管爭議。
所謂「輕推技術」是指專為引導用戶或鼓勵用戶決策時可以點選之程式以表示用戶想法,簡而言之Facebook、Instagram按「讚」功能、社群軟體Snapchat「Streaks」互動功能,或是新聞網頁常見「是」或「不是」選擇性問題視窗等即是輕推技術應用。由於輕推技術之設計會蒐集用戶瀏覽網頁習慣,甚至透露其個人性格、生活狀態給廣告商或社群媒體等。
諮詢報告指出,依據GDPR前言第38點規定,因孩童對於其個人資料處理之可能風險、結果及相關保護措施及其權利認知較低,同時依GDPR第5條規定個人資料之蒐集處理與利用,對資料主體者應為合法、公正及透明(lawfulness, fairness and transparency)。但輕推技術的運用將會促使資料主體者更容易地提供其個人資料,同時,尤其會誘導兒童去選擇隱私保護較低的選項設定或花費更多時間在這些服務上,而此一技術之運用正是利用資料主體者之心理偏差(psychological bias),而違反了公平與透明原則。因此諮詢報告書要求網路服務提供商應主動限制孩童使用輕推功能。ICO於諮詢文件更詳細依0-5歲、6-9歲、10-12歲、13-15歲、16-17歲不同年齡層限制輕推技術應用之程度,或在何種情況須有家長陪同,以保障孩童隱私。
此項標準引來正反兩派意見,主張自由市場(free market)人士批評,認為有過度監管之嫌並阻礙科技發展,輕推技術本身不是問題,而是在於蒐集個人資料後要做那些運用,同時要如何執行限制技術之應用亦將是問題所在。而贊成者認為廠商如提供網路服務給所有年齡層時,應有特別措施以保護不同年齡層之人,因此對於孩童與成人間之監管程度應有區別。該諮詢報告於今(2019)年5月31日截止公眾諮詢階段,並預計2020年初施行該行為準則。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本促進產學合作相關計畫簡介日本在促進產學合作,除了A-step計劃外,亦成立了創新中繼站構築援助事業(Support Program for Forming Innovation Hub)與創新中心(COI)等。 創新中繼站構築援助事業,由JST協助國立研發法人推動改革,以強化法人之效能,並做為大學與企業之中繼站,大學主司研究,企業則負責產業化階段,中間點則由JST與國立研發法人一同合作。JST負責召集人才、評定人才並進行創業援助、技術調查與分析。國立研發法人則提供人才培育及交流所需之資源(例如:機具設備的整修與提供,推動研究開發等等)。 創新中心(COI)則是政府預測未來10年之社會變遷及人口結構,再根據未來社會可能之需要,以建立理想社會為目標,通常進行具有高難度、高風險研發之創新中心。目前日本有18個創新中心分佈全國各地,由國家指定企業與大學共同進行,但是研究負責人只能是大學。
日本設置「創新藥品等實用化支援基金」促進創新藥品及再生醫療製劑研發上市日本在2025年2月12日閣議決定「藥機法等部分法律修正案」(原文:医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律等の一部を改正する法律案),送國會本會期審議。其中明文設置「創新藥品等實用化支援基金」,政府預先編列複數年度所需財源,並設有10年時限措施。此項基金業務預定由國立研究開發法人醫藥基盤、健康暨營養研究所(下稱研究所)負責實施,追加創新藥品等實用化支援事業為研究所新業務,並明定至令和18年(2036年)3月31日為止實施,說明如下: (1)為了「創新藥品及再生醫療製劑」(下稱創新藥品等)之實用化,整備研發所必要之具規模的設施及設備,並提供從事於創新藥品等實用化之人得以共同使用,以增加創新藥品等實用化之交流與合作之機會,對於從事此等業務以及其他提供必要支援之事業者(下稱創新藥品等實用化支援事業者),由研究所提供其必要資金及其他支援。 (2)創新藥品等實用化支援事業者欲從事前述支援事業,向厚生勞動大臣提出申請書取得認定。 該基金由政府與製藥企業等共同出資設立,以強化「製藥新創得以創造出創新藥品等之製藥基盤及基礎設施」為目標,對於實施創新藥品等新創進行支援之「創新藥品生態系園區之整備事業者」(例如:育成事業者或製藥企業等),整備育成實驗室(Incubation Lab)、動物實驗設施、臨床試驗用藥製造等設施,以及致力於新創支援之事業者作為補助之對象範圍,明文於實施3年後進行檢討,期能透過此一基金之運作強化創新藥品等之製藥基盤。