美國《雲端法》(CLOUD Act)

  美國《雲端法》(CLOUD Act),全名為《釐清境外合法利用資料法》(Clarifying Lawful Overseas Use of Data Act),於2018年3月23日頒布生效,該法更新《1986年儲存通訊紀錄法》(Stored Communications Act of 1986),並釐清海外資料合法取得:無論資料儲存地在美國境內或境外,美國執法機構均可合法請求通訊紀錄的保存或揭露。

  《雲端法》有兩大重點:首先,《雲端法》授權美國與其他值得信賴的國家進行雙邊協議,以取得重大犯罪之電子證據。其他國家必須擁有相應的完善法規、隱私、公民權利之保護,方具備與美國簽署雙邊協議的資格。透過雙邊協議,締約雙方可憑對方國家的搜索票等法律文件,直接對通訊服務提供者強制執行。其二,《雲端法》闡明美國與相當多國家長久以來的原則─假設一間公司在特定國家的司法管轄權範圍內,則其所產生的資料應接受該國的管制,資料儲存地為何,在所不問。

  《雲端法》的立法背景可以追溯到2013年美國聯邦調查局(Federal Bureau of Investigation, FBI)進行緝毒受阻。當時,涉案美國公民的電子郵件存於微軟境外伺服器,FBI持有搜索令,但是微軟以《1986年儲存通訊紀錄法》管轄範圍不及於美國境外為由,拒絕提供系爭電子郵件。2016年聯邦第二巡迴上訴法院於Microsoft Corp. v. United States判決微軟勝訴─美國政府不得強制取得境外伺服器資料。然而,此訴訟存在相當多爭議,復有2018年《雲端法》之制定,微軟亦對《雲端法》表示支持。《雲端法》通過時,最高法院尚未做出判決;最終,最高法院於2018年4月17日撤銷Microsoft Corp. v. United States。2019年4月10日,美國司法部發布雲端法白皮書,匯集刑事和國家安全專業的律師之意見,並回答常見的問題,希望提升全球的公共安全、隱私及法治。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國《雲端法》(CLOUD Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8291&no=66&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
美國Amazon開始免費提供CD之線上即時MP3資料服務

  美國Amazon於1月10日正式發表在美國國內開始提供消費者使用其所購入CD之MP3資料的免費雲端服務「AutoRip」。   消費者一旦在Amazon.com的網站上購買音樂CD以後,音樂CD的MP3資料就會自動加入雲端音樂服務Amazon Cloud Player上的使用者個人儲存空間。購買手續完成以後,資料立刻自動加入,無需等待CD本身的送達。在這項服務範圍內的CD約有5萬片,不僅是在服務開始後購買的才能享受,服務還回溯至1998年以來曾在Amazon.com上購買過CD的消費者。   Amazon Cloud Player在公司的Kindle Fire,以及iPhone與iPad等搭載iOS作業系統的終端設備,與各家智慧型手機等搭載Android作業系統的終端設備等等都可利用,旨在提供消費者無論何時無論何地皆可以享受音樂的行動價值。此外,音樂資料不僅可以透過串流播放的方式利用,也能直接免費下載存檔利用。   目前,這項服務的對象區域僅限於美國境內,在日本、台灣都還無法利用,不過在網路上也已經有許多網友開始殷切期盼這項服務後續的推出。值得一提的是,Amazon這項服務的推出也進一步突顯了企業因應網路著作權利用型態發展的一個重要轉變。

歐盟宣部推動「展望2020」計劃

  歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。   在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。   綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。   在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。

美國國家標準與技術研究院公布物聯網設備核心網路安全基礎指南草案

  美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2019年8月1 日公布「安全物聯網設備之核心網路安全特徵基準(Core Cybersecurity Feature Baseline for Securable IoT Devices)」指南草案,提出供製造商參考之物聯網設備網路安全基本要素,該指南草案中提出幾項重要核心要素如下: 設備辨識:物聯網設備必須有可供辨識之相關途徑,例如產品序號或是當連接網路時有具獨特性之網路位址。 設備配置:獲得授權之使用者應可改變設備的軟體以及韌體(firmware)之配置,例如許多物聯網設備具有可改變其功能或是管理安全特性之途徑。 資料保護:物聯網設備如何保障其所儲存以及傳送之資料不被未經授權者使用,應清楚可被知悉,例如有些設備利用加密來隱蔽其儲存之資料。 合理近用之介面:設備應限制近用途徑,例如物聯網設備以及其支持之軟體應蒐集並認證嘗試近用其設備的使用者資訊,例如透過使用者名稱與密碼等。 軟體與韌體更新:設備之軟體應可透過安全且可被調整之機制進行更新,例如有些物聯網設備可自動的自其製造商取得更新資訊,並且幾乎不需要使用者特別之動作。 網路安全事件紀錄:物聯網設備應可記錄網路安全事件並且應使這些紀錄讓所有人或製造商可取得,這些紀錄可幫助使用者與開發者辨識設備之弱點以近一步修復。

美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

TOP