美國衛生及公共服務部(Department of Health and Human Services, 下稱HHS)轄下的公民權利辦公室(Office for Civil Right, 下稱OCR)在2019年11月27日,正式對Sentara醫療機構處以217萬美元行政罰,主因該機構違反《健康保險可攜與責任法》(Health Insurance Portability and Accountability Act, 下稱HIPAA)的醫療個資外洩通知義務。
HIPAA是美國有關醫療個資管理的主要規範,依據HIPAA第164.400條以下「違反通知規則」(Breach Notification Rule)規定,當超過500位病患的「受保護健康資訊」(Protected Health Information, 下稱PHI)遭受不當使用或被外洩時,除應通知受害人外,還必須立即告知HHS以及在當地知名媒體發布新聞。而OCR主要負責檢查受規範機構,是否確實執行HIPAA隱私、安全和違反通知規則。
而在2017年4月,HHS收到指控Sentara將含有病患姓名、帳號、就診日期等涉及PHI的帳單發送到錯誤地址,造成557名病患個資外洩。Sentara卻認為該帳單內容未含有病患病歷、治療資訊或其他診斷紀錄,且僅有8人被影響,並非HIPAA應進行個資外洩通知義務之範疇,故不依規定程序通報HHS。不過OCR認為依HIPAA第160.103條規定,PHI包含病史、保險資訊、就醫紀錄(含日期)、身心健康狀態等可識別個人之健康資訊。因此認為Sentara確實違反個資外洩通知義務,予以罰款並命檢討改善。
Sentara醫療機構服務範圍橫跨美國維吉尼亞州(Virginia)和北卡羅來納州(North Carolina),共有12家急性照護醫院、10家護理中心和3家照護機構,為美國最具知名的大型非營利醫療機構之一。這次重罰也告誡國內醫療機構當發生敏感性醫療個資外洩時應從嚴判斷,以避免民眾對醫療照護單位失去信任,確保國內醫療機構體系應恪遵HIPAA規範。
由於能源價格、供給不穩定、以及環境考量等因素,使美國思考潔淨及再生能源的開發。美國能源部在2008年公布了一份報告「20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply」,檢視風能利用的可行性,希望在2030年達到風能發電占全國20%的需求。 美國在2010年因為金融海嘯後期的影響,對於能源的需求及價格降低,導致風能的發展減緩。而面臨一些新興的市場,例如拉丁美洲、非洲、亞洲陸續加入風能的開發領域,尤其中國大陸,自2005年後,幾乎每年呈倍數成長,2010年所累積的風能更超越美國,美國再度投入相關的計畫研發,在今年(2012)美國能源部宣布展開一項投入1.8億、長達六年的離岸風力能源計畫。 此計畫的第一步將於今年投入二千萬於全美四處離岸地區導入風力能源,這些風力能源計畫將能加速風力科技的重大發展,並能協助美國能源的多樣性規劃、提升經濟發展。離岸風力是美國相當具有潛力的能源,估計可以提供超過4000GW的能量,可以緩和美國的能源危機及經濟和環境的挑戰,而且能夠提供大部分人民居住的沿海城市的能源和電力。 此一計畫之申請者,希望是能在能源開發、設備提供、研究機構、海洋裝置專家等領域組成世界級的團隊。其目的是為了促進美國離岸風力的發展,並協助下一代風力能源科技的設計與示範。這個試驗計畫能協助瞭解導入離岸渦輪機、連接渦輪機與電網的主要挑戰。投入這個新興的產業,政府的補助可協助降低成本並加速美國沿海風力能源科技的發展,而且在實際的沿海環境測試能提供有價值的資訊。 在積極發展風能的同時,美國參議院於2012年3月,否決了風能業者延長租稅優惠的提案,此租稅優惠方案將於年底屆至。此優惠是針對風能發電製造成本的補貼,相關業者紛紛表示,終止此補貼將會影響美國風能的發展,因此他們將會繼續爭取。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
新加坡發布《無形資產揭露框架》,鼓勵企業主動揭露「無形資產」現況,以創造更高的價值新加坡政府於2023年9月4日發布《無形資產揭露框架》(Intangibles Disclosure Framework, IDF),鼓勵企業以系統化的方式,主動對外揭露所持有之「無形資產」(如品牌價值、專利等),使利害關係人(如投資者、合作夥伴等)能進一步瞭解其「無形資產」現況,藉此創造「無形資產」更高的價值。本框架是在「新加坡智慧財產局」(Intellectual Property Office of Singapore, IPOS)及「會計與企業管理局」(Accounting and Corporate Regulatory Authority, ACRA)主導下,由產業代表組成的工作小組歷時2年討論後制定發布。 框架中指出,過去20年間,全球「無形資產」的投資和所創造之價值逐步超過「有形資產」。然而,傳統會計準則往往無法完全真實反映企業所持有之「無形資產」價值,亦即「無形資產」價值往往被低估。因此,本框架鼓勵企業主動揭露,並建議可將「無形資產」現況納入公司年報(Annual Report)中,亦可獨立成一份報告,與公司財報(financial statements)一同發布。 此外,企業在揭露「無形資產」時可依循以下四項原則(簡稱「SIMM原則」): 1.策略(Strategy): 企業應揭露「無形資產」與其商業經營策略的關聯性、佈局狀況、貢獻度,使利害關係人瞭解企業是如何利用「無形資產」維持其競爭優勢及替投資者創造更多的收益。 2.識別(Identification): 本框架指出「無形資產」不用侷限於傳統會計準則的定義,企業應揭露「無形資產」的性質和特徵(包含如何取得),並建議可將「無形資產」分類,如:(1)行銷類;(2)顧客類;(3)契約類;(4)藝術類;(5)技術類;(6)人力資源類。 3.衡量(Measurement): 企業應揭露其評估(assess)「無形資產」價值的績效指標與驅動因子,並以量化方式呈現。如針對商標等「行銷類」之「無形資產」,企業得以顧客滿意度、國際品牌排名作為評估之績效指標。企業亦可選擇揭露「無形資產」的貨幣價值(monetary value),其評價應依照國際評價準則(International Valuation Standards , IVS)進行。 4.管理(Management): 企業應揭露其如何識別、評估、管理與各類「無形資產」相關之風險與機會,以及如何將這些程序整合至企業整體風險管理策略中,以協助利害關係人瞭解企業「無形資產」所面臨之風險和機會。譬如企業應明確揭露監控相關風險之頻率、定期更新風險管理政策和程序等。 新加坡總理公署部長(Minister of Prime Minister's Office)Indranee Rajah表示,本框架是「新加坡智慧財產戰略」(Singapore IP Strategy 2030, SIPS 2030)的重要推動措施之一,企業若能主動揭露「無形資產」現況,將有助於將其「無形資產」商業化、吸引更多的投資、增進風險管理、提升企業競爭力,持續強化新加坡作為全球智財活動及交易樞紐的地位。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。