英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年12月20日發布首宗依據歐盟一般資料保護規則(General Data Protection Regulation, GDPR)之裁罰。
本案源於英國藥物及保健產品管理局(Medicines and Healthcare products Regulatory Agency, MHRA)接獲投訴前往倫敦當地一家名為Doorstep Dispensaree Ltd之連鎖藥局進行藥品違規調查,卻意外發現其後院存放大量敏感個資文件,約五十萬個文件檔案皆未做任何資料檔案保護措施,上面更記載名字、地址、出生日期、NHS號碼、醫療資料及處方籤等患者之個人資料,旋即通報英國資訊專員辦公室展開調查。最終英國資訊專員辦公室以該藥局違反歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第5條1項第f款、第24條第1項及第32條,裁罰275,000英鎊。其裁罰理由如下:
一、隱私政策並不符合要求,如未述明蒐集個人資料之類別,未訂定個資保存期限,當事人告知聲明不完備,無當事人權利行使等。
二、無適當安全維護措施
三、涉及敏感性個資,違法情狀嚴重
四、未積極配合調查
五、影響層面甚深,導致該藥局配合之上百家療養院,近千名當事人個資受損害。
此為英國資訊專員辦公室首宗依據歐盟一般資料保護規則確定裁罰之案例且涉及敏感性個資,有其指標性。除此之外,英國航空與萬豪酒店之個資外洩案亦欲依GDPR進行裁罰,實值持續關注後續發展。
今(2007)年4月2日,美國最高法院以5票對4票之決議,認定美國環保署(the Environmental Protection Agency)必須負責管制美國境內二氧化碳等溫室氣體之排放。過往,美國環保署主張其並無權限去管制溫室氣體排放,因為溫室氣體並不是美國潔淨空氣法(the Clear Air Act)所定義的空氣污染源(air pollutant)。然而,法院指出,在潔淨空氣法中要求美國環保署必須管制可能危害公眾健康或福祉的任何空氣污染源,而溫室氣體符合該法對於空氣污染源之定義,所以除非美國環保署可以斷定溫室氣體並未導致氣候變遷,或者可以提供合理解釋說明為何其無法判斷是否溫室氣體導致氣候變遷,否則美國環保署須依法對溫室氣體採取進一步行動。 判決同時指出,美國環保署不能以氣候變遷之不確定性為理由來迴避其職責,如果該不確定性足以防止美國環保署對於溫室氣體與氣候變遷兩者關聯做出合理判斷,則美國環保署必須說明清楚。 然而,持不同意見的法官則指出,法院應將全球暖化問題留給國會與總統來處理;且州政府(訴訟是由Massachusetts州為首的12個州政府對美國環保署提出)並無立場對美國環保署提出告訴。
美國聯邦貿易委員會第一起關於智慧聯網案例之簡介—In the Matter of TrendNet, Inc. 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
奈米產品蘊藏健康風險,其管理應更慎重許多天然或人造的成分被奈米化之後,物理和化學性質可能都會改變,今年三月底,在德國即出現一起疑似因為使用奈米科技製造的廁所清潔噴霧劑「魔術奈米」,陸續出現嚴重呼吸問題,被送往醫院診治,其中六人還因肺水腫住院的案例,可見奈米級產品的安全性應有更為審慎之把關。 在各式奈米級產品中,「添加顏料、金屬和化學藥劑,是奈米化妝品與保養品對人體健康的最大變數!」美國 FDA 規定, 1 到 100 奈米( nm )微粒的保養品、化妝品都算是奈米產品,用來防曬的二氧化鈦是最常被添加的金屬成分,傳統粗顆粒的防曬用品,利用二氧化鈦擋住紫外線傷害皮膚,但鈦成分變成超細微粒,進入皮膚底層後會不會沈澱、累積,衍生皮膚癌、中毒或過敏病變?或經由血液沈積在內臟?目前都沒有具公信力驗證單位可以說明。各式化妝品調色的顏料,以及美白等用途的化學藥劑也被奈米化,對塑造時下流行的「裸妝」效果,確實很有幫助,不過,一旦這些化學製成的奈米微粒粒徑小於 50 到 80 奈米,也就是小於角質細胞的間隙,就會對皮膚造成傷害。至於奈米化的蜜粉和粉餅,可能因為撲粉過程把奈米微粒吸入肺部,產生呼吸道病變,甚至有致命危機。因此,許多學者均強烈主張,化妝品、保養品要上市販售之前,必須完成醫學上的病理實驗,不要把人當白老鼠。 生活中已經有多種產品以奈米化之形式推出,例如:保養品、化妝品奈米化的速度很快,許多製造商推出的新保養品均號稱含有奈米微粒,可深入肌膚,達到防皺、除皺功效。但是,英國皇家學會和美國食品藥物管理局( FDA )相繼表示,醫學界對奈米微粒與肌膚相互作用的知識還相當貧乏,除了深入肌膚的功效有待驗證外,更要注意這些奈米微粒是否會對血液產生長期的影響。 奈米科技是否會步上基因改造食品的後塵,成為消費者對新科技存疑之另一項技術,值得注意。奈米科技在風險未被證實前,業者腳步走太快,而政府完全放手不管,一旦出現意外事故,就可能把這項新科技給毀了。故要求主管機關要有所作為呼聲已經陸續出現,繼英國皇家學會最早投入相關之健康風險研究後,美國消費者團體亦透過 petition 機制,要求 FDA 加強對奈米級產品之管理。