日本發布深化與推動開放科學之建言

  日本學術會議所屬「深化與推動開放科學檢討委員會(オープンサイエンスの深化と推進に関する検討委員会)」為深化與推動開放科學發展,於2020年5月28日發布建言(原文為提言)。本建言接續國際間提倡的「資料驅動型科學」、與日本Society5.0政策內「資料驅動型社會」構想,目的在於凸顯研究資料共享概念與共享平台的重要性,梳理現行措施下的問題,並提出政策與制度調適建議。

  建言提出三項觀察。其一,研究論文投稿至期刊出版機關,論文尚未審查通過並發表前,論文本身與經整理之研究資料的著作財產權雖屬於原作者所有,出版機關原則會另與投稿作者約定,作者不得對外公開其研究成果與研究資料,目的在於避免未經審查通過的成果與資料散布,造成錯誤訊息流通。COVID-19疫情蔓延期間,美國國家衛生研究院(National Institutes of Health, NIH)、國立研發法人日本醫療研究開發機構(AMED)等研究資助機構,則依循過往大規模傳染病發生時的慣例,與期刊出版機關等達成協議並發表聲明,只要作者同意釋出,即允許有關論文發表前得先將研究成果與資料與WHO及外界共享,期待藉資料快速公開流通協助對抗疫情。這些措施體現了資料的重要性與共享可能性,但共享後,利用方新取得的資料應如何繼續以適切方式公開,則有賴資料的數位平台機制完備現行作法的不足。其二,資料本身非著作物,不直接受著作權法保護,各國法例亦較少另外賦予資料庫(database)法定權利。日本則在不正競爭防止法增訂「提供予特定對象資料(限定提供データ)」保護制度,定義非法取用原僅授權特定人使用之資料的行為,將落入不當競爭行為的範疇,強化營業與數位資料利用之法定權利保護。其三,近年來,日本公平交易委員會因應Google、Amazon可能運用資料蒐集達成市場壟斷的疑慮,重新檢討其反托拉斯政策,顯示資料利用亦可能牴觸反托拉斯法;歐盟一般資料保護規則(GDPR)的規範強度與密度較日本國內法為高,則讓資料利用涉及個資時,無法僅以日本個資法為標準。資料利用涉及多部法規,增加資料利用者合法使用的難度,從而降低研究者再利用研究資料的意願。

  基於上述觀察,本建言提出以下法制與政策建議:(1)統整不正競爭防止法、個人資料保護法、著作權法等相關法規範,同時考量研究資料本身特性與社會應用途徑,作成指引供外界遵循;(2)國家應資助學術界或進行研發活動之機構,建構得長期蒐整、保存與共享研究資料之平台,協助實現跨領域或跨部門的研究資料融合利用與價值創造;(3)針對研究成果採用的原始樣本(如岩石、土壤、生物、物質等),以及人文社會科學領域研究的原始資料(如文書紀錄、書籍、技術等),建立永久保存之制度。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本發布深化與推動開放科學之建言, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8501&no=57&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式

澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。 國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。 據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。 同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。 澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。

Ofcom宣佈將為身障者提供更為便利的電話服務

  英國電信管制機關Ofcom宣布,所有固網與行動電話業者將必須提供更為先進便利的「文字中繼服務(Text Relay Service)給所有聽力或語言障礙的民眾使用。文字中繼服務使聽力或語言障礙民眾能透過電話或文字電話(TextPhone)等設備而能與他人溝通,這項決定意味著所有的手機用戶將有機會獲得一個「下一代(next generation)」文字中繼服務,各種設備將能夠輔助身障者以更快、更流暢的交談速度與他人溝通。   Ofcom在經過文字中繼服務的審查研究後發現,目前的中繼系統以助理作為通話雙方的中介,進行語音與文字的轉換,反之亦然。然而研究發現,通話者對於對話速度的即時性與情感表達的完整性有提昇的需求,現在的系統通話的速度很慢,因為呼叫者只能輪流說話或輸入文字,無法即時快速如正常人一般的溝通。   因此Ofcom決定下一代文字中繼服務,在未來的18個月內將提供顯著的改進,包括:   語音雙向並行傳輸,透過網際網路的連接,允許通訊雙方可隨時插嘴,而無須等到一方的對話結束傳輸。如此將使交談雙方對話流動更快,有更自然的結果,新的服務也將支援更多種類的設備。為了達成這些改進,Ofcom將與產業、身障團體代表進行合作,探討當前和未來中繼服務所需語音辨識技術的精確度和速度的發展。Ofcom也將要求電信業者在未來提供視訊中繼服務,以確保身障者可以使用可靠的、先進的各種中繼服務,以幫助他們更容易溝通。

美國參議院重新提出FDA現代化法案3.0,加速新藥開發之動物實驗新替代方法發展

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。 在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。 FDAMA 3.0重點包括: 1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。 2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。 3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。 4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。 目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP