德國慕尼黑地方法院日前認定特斯拉關於「Autopilot」等銷售(廣告)標示將誤導消費者

  自特斯拉(Tesla)推行Autopilot(此於特斯拉之繁體中文官網譯作自動輔助駕駛)以降,其原先宣稱可免手動(Hands free),但經美國國家公路交通安全管理局(National Highway Traffic Safety Administration,NHTSA)指摘特斯拉前述宣稱可能使駕駛人注意力渙散而發生事故,似乎影響近年來特斯拉對於其自動輔助駕駛系統之論調,而改要求駕駛人即便開啟該系統仍須將手放置於方向盤上。除了前揭特斯拉於車輛銷售(廣告)資訊所生的爭議外,日前2020年7月間德國慕尼黑第一地方法院(Landgericht München I)之合議庭的判決,認定特斯拉於其車輛(Model 3)之銷售(廣告)標示資訊的整體,以及原告競爭中心(Wettbewerbszentrale)所分別主張之內容,均屬不正當競爭防制法(Gesetz gegen den unlauteren Wettbewerb,UWG)第5條第1項第2句第1款之誤導性商業行為(Irreführende geschäftliche Handlungen,或譯作引人錯誤之交易行為)。

  本件之爭點核心在於特斯拉現行車輛既有配備之Autopilot系統,以及消費者可自行選購之Volles Potenzial für autonomes Fahren(德文直譯:具備完全自動駕駛潛力,而特斯拉之繁體中文官網譯作全自動輔助駕駛)系統等用詞,因其等涉及車輛功能與設備之決定性概念和資訊,則與現行「車輛駕駛輔助系統」(Fahrassistenzsystem)存有落差,進而導致消費者理解與實際情況不一致之情形。

  法院認定理由在於不論特斯拉之Autopilot或Volles Potenzial für autonomes Fahren等系統,均無法達到毋須人為介入行駛的情境,即便其於官網上有另行標註目前該等系統功能有限,仍須駕駛人主動監控所有行駛環境等,但因該等內容說明不夠透明與清晰,而仍無法排除其等資訊具有誤導性,故特斯拉使用Autopilot等詞以及其他暗示車輛技術上能完全自主(vollkommen autonom)等用語,將引起消費者錯誤認知其可在德國的道路上運行完全自主之自動駕駛系統(註:此部分似係指SAE標準等級5之自動駕駛系統,然德國道路交通法目前僅開放運行等級4以下之自駕系統)。不過該判決結果仍可上訴。

相關連結
相關附件
※ 德國慕尼黑地方法院日前認定特斯拉關於「Autopilot」等銷售(廣告)標示將誤導消費者, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8517&no=66&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
歐盟執委會提出《淨零產業法》草案,促進歐盟淨零技術的發展

歐盟執委會(European Commission)於2023年3月16日提出《淨零產業法(Net-Zero Industry Act)》草案,以擴大歐盟潔淨技術的製造,並為歐盟的潔淨能源轉型作好準備,同時亦為綠色政綱產業計畫的一部分。其中適用之淨零技術則包含太陽光電和太陽熱能、陸域風電和離岸再生能源、電池和儲能設備、熱泵和地熱能、電解槽和燃料電池、沼氣和生質甲烷、碳捕捉利用和封存、電網技術、永續替代燃料、少量核廢的新興核能、小型反應爐,以及相關的先進燃料。而推動措施之重點如下: (1)建立有利發展的環境 將加強資訊的流通、減少成立專案的行政成本、簡化核准許可程序,以及設立單一聯繫窗口(One Stop Shop),以發展利於投資淨零技術的環境。另外,也將優先考慮能加強歐盟工業韌性和競爭性的淨零排放策略計畫,例如能安全儲存被捕捉之二氧化碳的場址規劃和建置。 (2)加速二氧化碳的捕捉 設定歐盟2030年的目標-二氧化碳儲存場址每年的注入容量應達到50百萬公噸(Mt),並要求歐盟石油和天然氣的生產業者需按其產量之比例做出貢獻,以促進二氧化碳捕捉和封存的發展,作為經濟上可行的氣候解決方案,特別是對於難以減少排放的能源密集產業。 (3)促進業者進入淨零市場 應在公共的採購和拍賣中,要求政府需考量產品的永續性和韌性並建立標準,促進公私部門對於淨零技術的需求,鼓勵業者們發展淨零技術,以提升該技術的供應多樣性。 (4)提升技能 設立專門的歐盟淨零學院,為潔淨能源轉型提供成熟的勞動力;並將與成員國、產業和其他利害關係人合作,設計培訓課程,重新訓練以及提升相關人才的技術能力。 (5)推動創新 支持成員國設立監理沙盒,在靈活的監管條件下對於新興的淨零排放技術進行測試以促進創新。 (6)設置淨零歐洲平台 建立淨零歐洲平台(Net-Zero Europe Platform)協助歐盟執委會和成員國進行合作和交換資訊。並且,透過該平台確認計畫之財務需求、瓶頸和最佳方案,以促進淨零相關產業的投資。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引

  歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。   EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。   EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP