為打擊境外逃漏稅,國際間持續擴大稅務資訊自動交換

  經濟合作暨發展組織(簡稱經合組織、Organization for Economic Cooperation and Development,下稱 OECD)於今年6月30日表示「2019年已有近百個國家/地區進行了稅務資訊自動交換,使其稅務機關可以獲得其居民在海外所持有的8,400萬個金融帳戶的數據,涵蓋的總資產達10兆歐元。相較於2018年(交換了4,700萬個金融帳戶資訊,約5兆歐元)有了顯著增長。」且「共同申報準則(亦稱共同申報及盡職審查準則、Common Reporting Standard, 下稱CRS)要求各國和各司法管轄區每年自動交換其金融機構提供的非居民的金融帳戶資訊,以減少境外逃漏稅的可能性。許多發展中國家已加盟其中,預計未來幾年會有更多國家加入。」

  OECD秘書長Angel Gurría亦表示「由OECD創建並由全球論壇管理的這種多邊交換制度,此刻正為世界各國(含發展中國家)提供大量的新資訊,使各國稅務管理部門能夠確保境外帳戶被正確申報。尤在目前COVID-19危機中,各國正籌集急需的收入,一個無處藏富的世界,此點遂至關重要。

  事實上,我國財政部於2017年11月16日所發布(民國109年4月28日修正)之「金融機構執行共同申報及盡職審查作業辦法」(簡稱CRS作業辦法),正是為了使我國接軌OECD發布及主導的CRS,藉由提高金融帳戶資訊透明度,據此與其他國家/地區進行金融帳戶資訊自動交換,以利我國與各國稅捐機關能正確且完整地掌握其境外納稅義務人的金融帳戶資訊。值得注意的是,我國第一波稅務資訊自動交換將於本年度9月份與我國32個稅捐協定國進行。

相關連結
你可能會想參加
※ 為打擊境外逃漏稅,國際間持續擴大稅務資訊自動交換, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8540&no=57&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
Angie's List起訴Amazon Local侵害營業秘密

  消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。   該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。   Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。

日韓電子商務法制環境與發展之比較

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

德國公布NAP II,要求能源及工業部門減少二氧化碳排放量

  為達到京都議定書 將二氧化碳排放量減量控制到 1990 年排放量的 20 %目標, 歐盟持續祭出多項政策措施,近一年來並已實施碳排放證交易機制。 所謂的碳排放證交易機制係指,業者若能成功減少污染即可出售多餘的碳排放證,而排放過多二氧化碳者卻必須購買碳排放證。為達成前揭目標,所有歐盟會員國均應依據歐盟的國家分配計畫( Nationalen Allokationsplan ),於其內國推動實施。   在歐盟架構下,德國政府於日前公布第二階段的 NAP II ,以接續目前第一階段、將持續至 2007 年的 NAP I 。透過 NAP I 及 NAP II ,所有產業-包括能源、工業、交通( Verkehr )、家戶( Haushalte )、以及手工業( Gewerbe )、商業及服務業-均將被要求共同致力於二氧化碳減量的目標,德國政府也一一就各產業訂出排放標準。   基本上, NAP II 係有關德國能源業和工業自 2008 年至 2012 年止有關二氧化碳排放量的基本原則,重點在能源業及工業的二氧化碳排放控制,此乃因這兩個產業每年的二氧化碳排放量高達總排放量的 60 %。 NAP II 對工業的減量要求較為寬厚,只須減少百分之一點二五的排放量,能源業卻必須減量百分之十五。德國環保部長表示,工業面對市場上激烈的競爭,可以少負擔一些氣候保護的成本。此外,為了鼓勵能源業者投資環保設備減少污染,可同時生產電力和熱能的電廠二氧化碳排放量管制將比照工業,反之,老舊的高污染燃煤電廠獲得的碳排放證,比起一般的能源業還要再縮減百分之十五。   雖則 NAP I 、 NAP II 的實施對德國整體產業均形成衝擊,不過這個從環保概念出發的政策,卻也將促使德國產業在未來幾年產生結構性的調整,政府與民間部門為了達到二氧化碳排放減量的目標,必將投入新技術的研究與發展,進而帶動永續、潔能、環境友善( eco-friendly )及綠色科技的發展。

TOP