5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。

  白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。

  此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8584&no=55&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
因應ChatGPT人工智慧趨勢,為企業提出營業秘密管理建議

2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效

  Gilead Sciences之子公司Kite Pharma(以下簡稱Kite)所推出之Yescarta®(Axicabtagene Ciloleucel)為治療復發型或難治型瀰漫性大B細胞淋巴瘤(Diffuse Large B-Cell Lymphoma, DLBCL)之CAR-T細胞治療產品,其為美國FDA第二個核准上市之CAR-T產品。   上述產品於2017年獲美國FDA核准上市後,Juno therapeutics公司隨即於美國加州中區聯邦地院起訴Kite,主張Yescarta侵害Juno therapeutics之美國7,446,190號專利「編碼嵌合T細胞受體之核酸(Nucleic acids encoding chimeric T cell receptors)」(以下簡稱190專利),2019年陪審團認定Kite成立專利侵權,裁定損害賠償額為7.78億美元;於2020年法院進一步認定Kite有蓄意侵權行為,再判定需增加50%之損害賠償金,使損害賠償總額超過11億美元。   本案上訴後,美國聯邦巡迴上訴法院(US Court of Appeals for the Federal Circuit, 以下簡稱 CAFC)於2021年8月26日推翻原審判決,認定190專利不符書面說明(Written Description)要件而無效。CAFC認為190專利請求項所請求之單鏈可變區片段抗體(single-chain variable fragment, scFv)結合部涵蓋過廣,包括可結合「任何」標的之「任何」scFv,惟其說明書未能提供其中之代表性物種(species)、或界定其共通結構特徵,於說明書中僅揭露可結合兩種不同標的之兩種scFv作為實施例,但未能說明此二物種如何、或是否能夠代表其所請求的整個上位之屬(genus)。CAFC指出,若要滿足書面說明要件之要求,說明書應揭露與代表性數量之標的結合之特定scFv物種,Juno雖提出專家證詞主張此二scFv實施例已具代表性,惟CAFC仍認為該證詞過於籠統而未能解釋何種scFv將與何種標的結合。CAFC指出,書面說明要件之目的在於確保專利排他權範圍不會超出發明人記載於說明書中之貢獻範圍,190專利發明人證稱其申請發明時只使用過說明書所載之兩個scFv實施例,且說明書未提供確認何種scFv將結合至何種標的之方法與指導,但190專利卻請求可與任何標的結合之scFv,因此,190專利之揭露內容未能證明發明人擁有結合至各種選定標的之所有可能scFvs,無法滿足書面說明要件之要求。   醫藥專利以上位請求項(genus claim)尋求保護時,可能因說明書記載內容不容易滿足書面說明與可據以實施(Enablement)要件而受到挑戰。除本案外,美國近期亦有數件醫藥專利因不符書面說明要件與可據以實施要件而被宣告無效,如Amgen Inc. v. Sanofi(Fed. Cir. 2021)、Idenix Pharmaceuticals LLC v. Gilead Sciences Inc.(Fed. Cir. 2019)、Enzo v. Roche(Fed. Cir. 2019),未來醫藥專利以上位請求項尋求保護是否會變得更加困難,值得繼續觀察。

行動定位服務中的位置資料隱私保護

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

TOP