歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。
個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。
此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。 Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。 聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。
品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
智慧財產權盡職調查(IP Due Diligence)智慧財產權盡職調查(Intellectual Property Due Diligence, IP DD),又稱智慧財產權稽核(IP Audits)。所謂盡職調查(Due Diligence, DD)係指:即將進入投資或購買交易前,投資者或其委託人透過事實證據所進行與投資或購買相關的評估。評估內容包含公司結構、財務狀況、業務、稅務、人力資源等,亦涵蓋有形資產與無形資產。其主要目的在於釐清該投資或購買是否存在潛在的法律風險。隨智慧財產權的概念愈來愈成熟,智慧財產權盡職調查也益發重要。智慧財產權盡職調查的內容常會包含:財產權(如:註冊地域、質押或保全情形)、授權或轉授權限制、申請之時期、優先權效期、爭議或訴訟(如:是否存在專利權無效之風險)。智慧財產權盡職調查的資料蒐集方式除了調閱智慧財產權申請記錄(file wrapper)、保密契約、授權文件,常見調查方式亦包含訪談重要員工和審閱發明人的僱傭契約。 假若沒有善盡智慧財產權盡職調查,很可能會後續引發潛藏的風險,諸如:估值錯誤、交易可能會因為未提前排除繁冗細節而遲延進而影響投資人意願、可能會導致必須重新談判,最嚴重可能必須放棄整個交易。未善盡智慧財產權盡職調查著名的實例是蘋果(Apple)與唯冠的iPad商標爭議。2006年蘋果策畫平板電腦並希望以iPad為名,台灣的唯冠集團早在2000年起於多國註冊iPad電腦商標。2009年蘋果透過英國子公司以3.5萬英鎊收購唯冠的iPad全球商標,並於2010年推出iPad。因為蘋果的智慧財產權盡職調查疏漏,而未發現iPad於中國大陸之商標權屬於深圳唯冠公司而非台灣唯冠,所以不能進入中國大陸市場。最後,蘋果與深圳唯冠以6,000萬美元鉅額和解。從iPad案可窺知智慧財產權盡職調查之重要性。
美國聯邦通訊委員會通過「數位機會資料蒐集計畫附加規則」,將改善美國境內寬頻網路布建差距之辨識美國聯邦通訊委員會(Federal Communication Commission, FCC)於2021年1月19日通過「數位機會資料蒐集計畫」附加規則(Digital Opportunity Data Collection additional rules),將幫助FCC蒐集更精確與準確的網路寬頻布建資訊(broadband deployment data),以完成美國境內寬頻網路布建差距之辨識任務。該規則規範了需向主管機關報告關於網路近用性和/或網路覆蓋率相關資訊的報告主體,使需要報告的固網和行動寬頻服務供應商範圍更加明確。另外該規則亦有針對網路服務供應商提出關於固網速度與網路延遲相關報告時,所應遵守事項作規範。 該規則亦針對蒐集各州、地方與部落網路寬頻布建資訊的對應實體(mapping entities)、聯邦政府機構,與第三方單位,制定此三方進行辨識寬頻網路布建差距作業時所應遵守之注意事項,並為網路服務供應商提交固網和行動寬頻覆蓋率地圖資料時,設置其提交流程所應遵守之相關規範。該規則要求行動式網路服務供應商提交依據實際情況的相關基礎設施資訊或現場測試資料,作為FCC對行動式網路覆蓋範圍調查和驗證的資料,這些資料還將應用於擴大某些特定區域行動式網路寬頻覆蓋範圍的相關作業上,以增加該區域居民的使用數位機會。 「數位機會資料蒐集計畫」附加規則將使FCC確切知道寬頻網的可近用服務位置和不可近用服務位置,以及更了解美國的寬頻網路需求,以確保將來每位美國公民都能使使用高速網路服務,這同時也是「數位機會資料蒐集計畫」的目的。