歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。
個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。
此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
歐盟執委會(European Commission)於2020年3月6日提出「歐洲氣候法」(European Climate Law)草案,執委會提出該草案之目的,係為實現2019年「歐盟綠色新政」(European Green Deal)所確立的目標,以敦促歐盟所有政策及公、私部門,皆能為零碳排願景共同努力。歐盟期望在2050年前成為世界第一個碳中和地區,並轉型為一個經濟成長卻不損及資源消耗與開採的綠色經濟體。該法性質屬於「規則」(regulation)的法律位階,具有普遍性規範效力,得直接適用於歐盟成員國,意即歐盟成員國必須遵守及實施歐洲氣候法的規範內容。「歐洲氣候法」草案全文共11條條文,其規範重點及法制架構,簡要整理如下: 氣候法草案之法律框架應與歐盟現行政策保持一致性,例如再生能源、綠色新政下的投融資計畫、產業戰略及循環經濟行動計畫等,並審查歐盟能否將原先2030年與1990年相比減少40%的減量目標,提高至減少50至55%。 法律基礎應奠基於維護、保護及改善環境品質,輔助及加強國家與地方因應氣候變遷的行動措施;在符合比例原則下,要求歐盟成員國針對氣候中和目標採取必要保護措施。 依據歐盟基本權利憲章第37條環境保護之要求,有關高標準之環境保護及環境品質改善,必須納入歐盟政策及符合永續發展原則;透過氣候法來促成及凝聚社會轉型的共識,該法要求執委會應促進利害關係人及公民社會的參與,增強公民參與的交流,透過社會參與達成廣泛的永續發展共識,並規劃多層次氣候與能源的社會對話。 考量歐盟內部公平且團結的重要性,執委會於2023年9月開始,每隔5年將監測與評估歐盟及各會員國之綱要政策與保護行動,並針對不一致行動或保護不足情形,將提供適當的改善建議及具體措施,藉以確保歐盟成員國彼此間氣候政策與歐盟框架保持一致。 歐盟執委會期望透過具有強制約束力的法制框架,除實現巴黎協定之承諾(2050年前達到零排放之願景)外,更是為了結構性脆弱與抵禦氣候變遷能力不足的成員國,提供一個公平的轉型框架。目前該草案已於2020年5月完成公眾意見徵集,歐盟執委會雖未明確公布預計通過的日期及相關規劃,但其將於2021年6月前盤點相關規範,藉以整體性調修法制規範與氣候治理行動。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國白宮公布巨量資料追蹤報告與政策建議