歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應

  歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。

  個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。

  此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。

相關連結
相關附件
你可能會想參加
※ 歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8652&no=57&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告

  澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。   報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。   未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。

中國大陸法院認定體育用品公司攀附日本知名動漫作品名稱係謀取不正當利益

  中國大陸北京知識產權法院於2016年10月26日作成(2015)京知行初字第6058號判決,依中國大陸商標法第41條第1款認定中國尚藍體育用品有限公司之「黑子的籃球」商標(商標號:11226352),係以不正當手段取得,應維持商標評審委員會對其之無效裁定。   法院認為,尚藍公司大量註冊100多個與日本集英社動漫作品《黑子的籃球》相關聯之商標,且無法證明予以實際使用,此行為擾亂商標註冊秩序。《黑子的籃球》在尚藍公司註冊商標前已於中國具有一定知名度,尚藍公司係攀附他人地位而謀取不正當利益。   據中國大陸商標法第41條第1款,已註冊之商標若以欺騙或不正當手段取得註冊,由商標局撤銷之,其他單位或個人得請求商標評審委員會裁定撤銷之。所謂不正當手段,按中國大陸最高人民法院之解釋,指擾亂商標秩序、損害公共利益、不正當占用公共資源及其他謀取不正當利益的手段。本案法院審理時,參酌系爭商標之實際使用情況,並以《黑子的籃球》在中國動漫展、漫畫出版、動畫撥放、網路討論等,認定其在中國具有高度知名度,且先於系爭商標,故對尚藍公司之訴訟主張不予支持。   此判決,可窺見中國大陸法院判斷商標知名度之標準,我國廠商在中國大陸對抗商標蟑螂時,應不可忽略品牌推廣之重要性。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國2018年5月14日拜杜法修法生效,NIH同年10月因應修法公布對應修正的研發成果經費資助政策

  美國拜杜法案修改由美國商業部的國家標準暨技術研究院(National Institute of Standards and Technology;簡稱NIST)於2018年5月14日發布生效,美國各界稱此次修法案為新拜杜法或是2018拜杜法(new Bayh-Dole Act Regulations)。除此之外;國家衛生研究院(National Institutes of Health;簡稱NIH)也於同年10月公布對應修正的研發成果經費資助政策,並調整IEdison系統以符合新法規。本次修法釐清多項定義、減低法規負擔、解決受資助單位與資助單位共有發明的問題、簡化電子控管程序。修法內容簡要說明如下: 適用範圍不限組織規模,包括非營利機構、小企業、個人,並擴及大企業。 若聯邦雇員是研發成果的共同發明人,其所有權由聯邦資助單位擁有。 一連串時間修正。包括(1)聯邦政府取得研發成果所有權改為無時間限制(原來是60天)。(2)研究機構須在專利申請期限60天前回復聯邦不申請專利的決定(原來是30天)。(3)美國臨時案申請轉為正式專利申請案的時限改為10個月,因為還需要加上提前60天通知聯邦機構不申請專利。 研究機構有權在工作合約要求職員將研究發明權利讓與給研究機構。 最初專利申請的範圍擴及PCT申請以及植物發明品種申請(原本僅限專利申請以及臨時案申請)。

TOP