英國自2020年1月31日正式脫離歐盟後,即成為歐盟跨境傳輸的「第三國」。能否持續和歐盟國家進行個資傳輸,就須視歐盟對英國跨境資料保護方式和《一般資料保護規範》(General Data Protection Regulation,GDPR)有無認定雙方具有本質上相同的保護程度,又稱為「適足性」(adequacy)的認定。目前,歐盟給予英國跨境傳輸過渡期到2021年7月,在此之後若希望持續不受限制的交流,就須經歐盟執委會(European Commission, EC)通過適足性認定後才得以進行。
2021年2月19日,歐盟執委會提出草案,認為英國的個資保護標準與歐盟的「GDPR」、「執法機關資料保護指令」(Law Enforcement Directive,LED)有適足性之適用。又在4月14日,歐盟個資保護委員會(European Data Protection Board, EDPB)針對歐盟執委會於2月19日所做的認定草案提出兩項意見:
一、肯認英國現行國內資料保護的核心架構中有關個資保護、處理及控制者的要件及處理方式和GDPR的保護程度並駕其驅。另,肯定英國「2018年資料保護法」(Data Protection Act 2018)中有關GDPR及LED的適用及對「英國資訊委員辦公室」(Information Commissioner’s Office, ICO)所賦予的權利及義務。
但同時,EDPB也向歐盟執委會提出以下幾點注意事項:
二、 認為英國法律框架中的核心要件實質上與LED的基礎原則具有高度一致性。因此建議歐盟執委會引入四年的日落條款(four-year sunset clause)方式,並密切觀察英國資料保護的發展,在必要時得以要求修改或終止LED適足性的決定。
針對以上問題,歐盟執委會希望能在6月底前廣納各國意見並做出決定。屆時,若通過適足性認定,其效期將延續4年,之後再進行適足性評估。並可能在英國開始制定相關的適足性及資料保護架構時,歐盟執委會得將其納入定期審查的項目中,以確保歐盟的個資跨境傳輸進入英國後,仍受適當的保護。
具社會經濟學基礎的ZOPA在2005年一出現,即被經濟學人報和集團研究指出,其將是砍掉傳統銀行以及改觀自古以來民眾對貨幣概念的驚人創新金融服務。這種抽離中間金融機構的消費借貸平台,使得交易雙方能取得更滿足交易條件。 相較傳統的借貸,這樣較高收益的交易也同樣帶來較高的風險。不過,ZOPA透過包括信用評等分類、將同一出借款項出借給多人等方式,期使風險降到最低。不過,出借人也要特別注意相關法律議題。依據英國1974年之消費者信用貸款法案(Consumer Credit Act),任何在從事商業交易行為中出借金錢之人,且非偶而為之者,應取得公平貿易部(Office of Fair Trading/ OFT)核發之消費者信用貸款執照(Consumer Credit License),否則為觸犯刑法,會被處以刑罰或罰鍰。目前,在ZOPA可借入之金額已超過15,000英鎊,未來勢必繼續發展,且不排除跨入現有銀行業務範圍。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念近年專利蟑螂(Paten Troll)、非專利實施實體(Non-Practicing Entity, NPE)的興起,使得國際上智慧財產權的運用出現巨幅變化。美國政府、企業及學界皆認為專利蟑螂濫訴現象為亟待解決之課題,而相繼投入研究,並於近日陸續發表重要之研究報告。 繼今年(2012)8月,美國國會研究處 (Congressional Research Service)提出對抗專利蟑螂之研究報告後(“An Overview of the "Patent Trolls" Debate”)。隸屬國會的政府課責署(Government Accountability Office, GAO, 另譯審計總署)所資助的研究團隊,亦於杜克大學科技與法律評論(Duke Law & Technology Review)發表相關研究。研究團隊採取實證的研究方法,於2007年~2011年間,每年度隨機抽樣100家涉及專利訴訟的公司,總計抽樣500家公司。依據該項研究結果,去年(2011)由NPE所提起的專利訴訟,佔研究樣本的40%,相較於5年前的數據,成長幅度高達2倍。本項研究可歸納以下兩項要點: 1.專利訴訟主體的變化 由NPE為原告所提起的專利訴訟數量呈現極速成長;由企業為原告者則逐年下降;同為非專利實施實體之大學,其作為原告所提起之訴訟則未達1%。 2.訴訟並未進行實質審理 由NPE提起之訴訟,其目的在於獲取和解金或授權金,故絕大多數係申請作成即時判決(summary judgement),即當事人一致認為對重要事實不存在爭議,而向法官申請不為事實審理,僅就法律問題進行裁決。 就此,該研究團隊認為,NPE已成為專利制度,甚至係整體經濟之一環,故提出應以「patent monetization entities」取代過往NPE的稱呼,強調此類公司以專利授權或專利訴訟作為公司營利之來源,如此將更為貼切。
從日本政策看我國音樂產業海外拓展之必要性及有效作法