藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用

  藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。

  為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。

  此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。

  最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8733&no=64&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
美國提出消費者隱私保護法案

  美國政府於今年(2012年)02月23日提出「消費者隱私保護法案」(Consumer Privacy Bill of Rights),總統歐巴馬認為:「為保護美國消費者網路上的個人資訊,清楚的法律已刻不容緩。電子商務的成功,必須讓消費者感到安全…,保護消費者的資訊能確保網路交易平台的成長」。   白宮提出的法案中明確點出下列幾項值得關注的議題:1、獨立控制:消費者有權了解自身資料被誰蒐集,以及他們如何使用這些資料。2、透明度:消費者能容易的了解隱私及資訊安全的訊息。3、考慮內文:消費者有權期待蒐集個人資料的組織,處理個人資料的方式能提供消費者知悉並且言行一致。4、安全:消費者的個人資料應受到安全可信任的保護。5、近用與正確性:消費者有權查詢與更正個人資料。5、集中蒐集:企業僅能有限度的蒐集消費者資訊。6、責任:消費者有權要求蒐集資訊的公司妥善保管個人資料並遵循「消費者隱私保護法案」。   美國商務部及資訊管理局會將在未來幾周進行細部的規劃,並尋求技術專家、業界、學者的意見,商務部將研擬相關具體可行的做法。

加州通過學生線上個人資料保護法案(the Student Online Personal Information Protection Act)

  隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。   SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。   此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。   SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。

德國將放寬非基因改造標示法規

  德國聯邦食品農也消保部(BMELV)發言人宣布,針對非基因改造食品標示制度之修正,今(2008)年初已達成政治協商,未來德國的非基因改造食品標示,將會容許那些在無可得替代產品的情形下而使用了基因改造維他命、添加物或加工輔助用料等基因改造產品之終端食品,標示為非基因改造食品。如此一來,那些使用目前只能以基因改造加工製成之維他命(如維他命B21、lyside等)所飼養之動物,日後動物來源食品以其作為原料時,這些食品將來也可以標示為非基因改造。此修法預計可在明年初完成實施。   德國此次修法目的,實係為了促進食品產業使用非基因改造標示。自從1990年建立非基因改造食品專有之標示制度起,動物來源食品如要作非基因改造標示,必須連在飼養時都使用非基因改造飼料,但食品產業卻表示此規定審為嚴苛且維持基因改造聲明所需的文件繁多,此機制實際上根本難以運用。BMELV為了促進食品產業使用非基因改造標示,遂決定修法放寬標準。   然而,這樣的修法仍然引起部分反對意見,例如德國食品產業聯盟(German food industry federation)即表示,非基因改造標示應當只能給予完全未使用基因改造之產品,其他產品則應使用諸如未含基因改造植物之類的聲明,否則就是誤導民眾之行為。此外,假如標有非基因改造標示的食品以此種方式使用過基因改造材料的話,更可能會折損非基因改造食品標示可性度。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP