歐盟發布新版「向第三國傳輸個人資料標準契約條款」

  歐盟執委會以(EU)2021/914號執行決定(Implementing Decision)所發布的新版「向第三國傳輸個人資料標準契約條款(New Standard Contractual Clause for the transfer of personal data to third countries,下稱SCC)」已於9月27日起正式取代舊版條款。

  新SCC發布於2021年6月27日,旨在滿足歐盟法院(the Court of Justice of the European Union, CJEU)以2020年7月Schrems II判決所訂定之資訊保護需達「足夠充分(substantially sufficient)」標準。該版SCC為因應不同情境之跨境資料傳輸,而設計採取4種模組之規範條款供涉及歐盟境外之第三方資料傳輸者(控制者與接收者)依循參採,包括:

  1. 規範模組一:從資料控制者(Data Controller)到資料控制者的資訊傳輸(Transfer from controller to controller, C2C)
  2. 規範模組二:從資料控制者到資料處理者(Data Processor)的資料傳輸(Transfer from controller to processor, C2P)
  3. 規範模組三:從資料處理者到資料處理者的資料傳輸(Transfer from processor to processor, P2P)
  4. 規範模組四:從資料處理者到資料控制者的資料傳輸(Transfer from processor to controller, P2C)

  本次執行決定亦設立了轉換期以利各方進行合規審查與契約調整:雖然舊版已於2021年9月27日廢止不再適用,原已適用舊版SCC之契約,至遲仍得實施至2022年12月27日止。(亦即新版SCC公佈後的18個月內)。

  在此執行決定下,歐洲資料保護委員會 (European Data Protection Board)亦發布「關於如何確保對個人資料傳輸採取適當保護措施建議(Recommendations 01/2020 on measures that supplement transfer tools to ensure compliance with the EU level of protection of personal data)」釐清GDPR「傳輸影響評估(Transmission Impact Assessment, TIA)之機制流程 。

  隨著資通科技之快速崛起跨境個資傳輸已成為企業常態,而此種現象近期甚至在交通自動化的科技發展下逐漸擴及交通業別,其中全球航運和物流公司在全球範圍內傳輸個資,其中甚至包括用於履行和營銷目的之乘客資料、員工個人資料和客戶業務聯繫資訊等敏感個資已成為常態,應儘速因應相關法制之發展,解決全球範圍內快速發展的隱私合規問題。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟發布新版「向第三國傳輸個人資料標準契約條款」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8759&no=57&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
美國聯邦通訊委員會(Federal Communications Commission,FCC)提議恢復網路中立相關規範,並發布規則草案

美國FCC主席Jessica Rosenworcel於2023年9月26日發表演說,並於內容中提案恢復在美國前總統川普任期間被廢止的網路中立性(Net Neutrality)相關規定,包含禁止寬頻網路業者對給付額外費用者提供「快速線路(fast lanes)」,或禁止電信業者對其網路服務減慢網速等規定。 FCC表示網路中立性規範可維護以下4大要點,包含: 1. 開放性:避免消費者觀看合法內容受阻,或是需要支付額外費用取得。 2. 國家安全:將寬頻網路渠道重新分配,以對抗潛在國安威脅。 3. 資訊安全:FCC得以強化寬頻網路韌性(resiliency),並要求網路業者在中斷網路時,需先行通知FCC與消費者。 4. 全國標準性:將樹立全國統一標準取代各州自行規範。 然而,有產學界的反對意見指出,在相關規定廢止期間,並未發現有網路業者因額外收費而對消費者的網路內容或網速進行干預。故認為FCC誇大了這些隱憂。 2023年10月19日,FCC在內部表決後,確定開始恢復網路中立規則程序,並於隔日發布包含最新草案內容之擬議規則制定通知(Notice of Proposed Rulemaking),草案除包含以上4要點相關規範以外,亦包含對寬頻網路近用業者(Broadband Internet Access Service,BIAS)等相關業者要求與限制,例如: 1. BIAS業者必須為殘疾消費者(disabilities)提供網路使用相關幫助。 2. BIAS業者將劃分為電信業者(telecommunications service)並適用相關規定。 針對目前草案內容,FCC目前正在公開徵詢意見,預定徵詢期限至2023年12月24日,並在2024年1月17日將意見彙整回報後,再進行後續表決及相關程序。 若網路中立性規範恢復,可能影響具跨國業務的網路業者,進一步影響其他國家的網路政策與法規,故亦可能對台灣網路業者與網路政策產生影響,值得我國持續關注後續發展。 本文同步刊登於TIPS網(https://www.tips.org.tw)

歐洲發展智慧電網對資訊安全與隱私保護之現況

  歐盟執委會於2011年4月發布的「智慧電網創新發展」(Smart Grids: from innovation to deployment, COM(2011) 202 final),在有關資訊安全與隱私的部分指出,應建立消費者(consumer)隱私的保護規範,促進消費者的使用意願並瞭解其能源的使用狀況;在資訊交換的過程中,亦須保護敏感的商業資訊,使企業(companies)願意以安全的方式提供其能源使用訊息。   歐盟保護個人資料指令(Directive 95/46/EC)是保護個人資料的主要規範,同時也適用在智慧電網個人資料的保護上,但此時則需要去定義何謂個人資料,因為在智慧電網的發展中,有些屬於非個人資料。若為技術上的資訊而不屬於個人資料的範圍,能源技術服務業者(energy service companies)則不須經同意即可讀取該些資訊以作為分析使用。考慮將來廣泛建置智慧電網後,各會員國可能遭遇如何認定是否為個人資料及其保護的問題,因此目前傾向採取「privacy by design」的方式,亦即在系統設計之初,即納入資訊的分類,而不做事後的判斷。   對於此,歐盟執委會於2012年3月發布「智慧電表系統發展準備建議」(COMMISSION RECOMMENDATION of 9.3.2012 on preparation for the roll-out of smart metering systems),對於相關定義、資料保護影響的評估(例如各會員國必須填寫並提交執委會提供的評估表格,且提交後則必須遵循相關規範)、設計時的資料保護及預設(例如在系統設計時一併納入對資料的保護,使之符合資料保護的相關法規)、資料保護的方式(例如會員國必須確保個人資料的蒐集、處理及儲存是適當的並且具有關連性)、資料安全(例如對於資料偶然的或非法的破壞、或偶然的喪失等情形,亦應予以規範)、智慧電表的資訊與透明化(例如在蒐集相關個人資料後,仍應依規範提供資料主體相關的訊息)等方面提出建議,供各會員國於制訂相關規範時的依據。

自日本產業競爭力強化法暨特區立法談監理沙盒立法之推動與課題

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP