法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料

  法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為:

  1. 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。
  2. 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。

  因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。

相關連結
你可能會想參加
※ 法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8774&no=55&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
預先擬定的事故應變計畫可降低資料外洩成本

  根據Ponemon Institute的調查,2011年至2012年中,英國企業資料侵害事故平均成本增加了15%。賽門鐵克指出,若企業備有正式的事故應變計畫,每件資料侵害事故的平均成本會降低至13英磅左右。除此之外,雇用外部顧問來協助應變,每件資料侵害事故的平均成本也會節省4英磅。   依據新的資料保護法律架構,歐盟委員會日前已開始擬訂新的資料侵害事故通知制度。同時,根據不同委員會的需求,未來將針對特定產業,制定新的網路與資訊安全管理規範。。   專家評估未來責任保險將成為確保資訊安全的新潮流。企業藉由事先擬定事故應變計劃來降低資料侵害的風險,同時也進行風險轉移的處置措施。各項事故應變計劃之中,保險制度是企業目前較感興趣的措施之一。保險制度除了可用於風險轉移之外,企業還可以從中取得資料侵害事故的專家網絡。這些專家包含事故鑑定專家、公共關係專家、風險管理專家,信用監測提供者或是資料侵害事故的事務處理公司,例如:協助發送事故通知的公司。保險業建置的專家網絡,未來將可以幫助要保人,以最快最省成本的方式處理相關事故。

品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵

陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐洲創新計分板(European Innovation Scoreboard)

  歐洲創新計分板(European Innovation Scoreboard, EIS)為針對歐盟成員國以及其他歐洲國家的研究與創新績效、創新體系等進行的評比報告,由歐盟執委會(European Commission, EC)每年發布,協助了解各國創新力態樣與市場競爭優勢。   EIS以綜合創新指數(Summary Innovation Index)作為整體評估標準,區分為四大類指標、10個創新構面,並細分為27個評估子標。四大類指標及相關架構如下: 創新環境指標:其中包含3種創新構面分別為人力資源、國家研究系統和友善投資環境; 投資指標:包含財務支援與企業投資創新構面; 新創活動指標:其創新構面包含創新者、連結度(linkage)和智財; 影響力指標:囊括就業影響力和銷售市場影響力兩種構面。   2019年6月發布歐洲創新計分板報告,歐盟創新發展連續四年均有進步。報告將歐盟會員國創新表現分為四組,分別為:1.創新領導者:包含丹麥、芬蘭、挪威等國;2. 優秀創新者:包含奧地利、比利時、德國等;3.中等創新者:包含希臘、匈牙利、義大利等;最後一組4.適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞等。該報告亦個別在特定領域上進行排名,例如在創新研究體系領域,盧森堡和丹麥表現最好,友善創新環境則以丹麥及芬蘭為最優,企業投資由德國和芬蘭領先,智財領域應用上則以中等創新組的馬爾他居冠。

澳洲數位轉型局12月發布《政府負責任使用人工智慧政策2.0》,以強化公部門之AI風險管理

2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。 一、適用範圍 政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。 二、政策重點 在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構: (一)制度建置 1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。 2. 人員指定與培訓: 機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。 所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。 3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤 該清單至少包含: (1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。 (2)風險等級(Risk rating):AI使用案例的風險等級資訊。 (3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。 (4)自定義欄位:各機關可根據其需求,自行增加欄位。 (二)AI 使用案例範疇判斷 機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用: 1.對個人、社群、組織或環境造成重大損害。 2.實質影響行政處分或行政決策。 3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。 4.涉及個人、敏感資料等資訊。 (三)進階風險評估 依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。 判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。 澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP