世界經濟論壇發布《2022年全球網路安全展望》

  世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下:

  1. COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。
  2. 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。
  3. 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。
  4. 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。
  5. 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。

     

相關連結
相關附件
你可能會想參加
※ 世界經濟論壇發布《2022年全球網路安全展望》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8791&no=57&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
科法觀點
你可能還會想看
避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。   Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。   根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。   受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。   Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

美國有限合夥發展於我國之借鏡

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

美國提出「個人資料隱私暨安全法案草案」,規範聯網環境商業應用及隱私權利

  面對層出不窮資料違背或身份竊盜事件,2014年初, FTC於美國國會的例行會議上,就數位時代關於隱私權之保護課題進行作證,會議中,FTC乃呼籲美國國會應立即通過制定一個更強的聯邦資料安全與違背提醒的法律,其也進而提出「個人資料隱私暨安全法案(草案)」 (Personal Data Privacy and Security Act of 2014, S.1897)。該草案主要分成兩大部分: 第一部份,將強化身份竊盜和其他違反資料隱私與安全之懲罰;第二部份,係關於可茲辨識個人資料(PII)之隱私和資訊安全。   法案第202條係關於「個人資料隱私與安全機制」(personal data privacy and security program),目的在強化敏感性可茲辨識個人資料的保護,從行政(administrative)、技術(technical)和實體(physical)三個構面的防衛機制,進行相關標準之制訂與落實。有關適用之範疇,乃就涉及州際貿易之商業實體,而該州際貿易包含蒐集、近取、傳輸、使用、儲存或在電子或數位格式處理可茲辨識個人之敏感性資料,而這些資料總計多達1萬筆以上,然而,將不適用於金融機構(financial institutions)、醫療保險轉移和責任法(HIPPA)所管制者、服務提供者(service provider)和公共紀錄(public records)。   而在機制設計上,也係從「設計」(DESIGN)、「風險驗證」 (RISK ASSESSEMENT)和「風險管理」(RISK MANAGEMENT)三個角度進行切入,也必須確實提供員工教育訓練(TRAINING)、弱點測試(VULNERABILITY TESTING)、定期驗證和個人資料隱私與安全之更新,另外,在與外部與服務提供者(例如ISP)之關係上,公司必須盡到適當勤勉的義務(due diligence),也必須透過契約(contract)方式,約定前述所建置起之資料隱私安全機制,並在安全性遭受到侵害時,以合理方式通知締約他方。   本案目前在聯邦參議院已經二讀通過,已交付參議院司法委員會進行下一階段的審議,該立法草案未來是否會直接或間接影響物聯網環境生態系統之商業運作,有待未來持續關注之。

TOP