西班牙AEPD增加關於健康和個人資料保護關注領域

  西班牙個資監管機關(Agencia Española de Protección de Datos, AEPD)於2022年5月3日增加健康和個人資料保護有關的關注領域。觀2021年,計有680件與健康資料相關之爭議案件,與2020年相比增長了75%,又因健康資料為特殊類型之個人資料,故更應嚴加保障。

  該領域的內容適用於公民、資料控制者、資料保護專業人員、健康中心或製藥行業等,共分六小節:

一、第一小節概述了與健康資料有關的權利,解釋了歐盟一般個人資料保護規則(General Data Protection Regulation, GDPR)第9條及西班牙當地規範有關處理健康資料定義、如何行使醫療記錄近用權(Right to access),以及與醫學研究相關的問題,其中規定了患者在使用資料和臨床文件方面權利和義務、在近用權被拒絕情況下如何向AEPD申訴、臨床病史保留及刪除權利之限制等。

二、第二小節重點介紹AEPD公布的相關報告和指南,包括勞資關係中之個人資料保護指南,及有關臨床病史、臨床試驗等相關主題之報告。

三、第三小節則著重在AEPD於新型冠狀病毒肺炎(COVID-19)爆發後,製作大量與COVID-19相關之聲明文件及法律報告,故在此彙整相關資料,以協助落實個人資料之保障。

四、第四小節健康研究和臨床試驗,其中彙編了相關指南,以及規範臨床試驗和其他臨床研究以及藥物安全監視所涉個人資料保護行為準則。

五、第五小節講述與健康狀況有關之申訴、賠償紀錄部分,其中包括AEPD收到多項涉及已故患者直系親屬近用醫療記錄之權利或醫療專業人員非法獲取臨床病史和醫療記錄之投訴。

六、第六小節側重於醫療組織洩露個人資料議題,概述了資料控制者之義務以及為確保遵循GDPR而應採取之措施,另強調以特殊方式處理健康資料之活動,如電子健康紀錄、物聯網醫療所使用之行動裝置或雲端等存取設備,皆存在外洩之風險因子。

相關連結
你可能會想參加
※ 西班牙AEPD增加關於健康和個人資料保護關注領域, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8844&no=57&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
日本內閣官房提出未來投資戰略報告加速機器人實用及活化

  日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。   機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國最高法院就蘋果與三星間關於設計專利侵權一案進行審理

  美國加州聯邦法院於2015年12月裁定三星侵犯iPhone設計專利,需向蘋果賠償5.48億美元。三星不服因此上訴至美國最高法院,美國最高法院於今年(2016)10月11日開庭審理韓國三星電子公司的專利侵權糾紛案,針對加州聯邦法院授予蘋果的賠償金是否過多一事進行審議。   智慧手機是包含多個部件、技術之複雜產品,設計專利持有者不能因為某項專利侵權而要求獲得整個產品之全部利潤。本件上訴案中,三星聲稱「被認定侵權的功能僅占三星電子手機價值的1%,蘋果卻得到了三星電子100%的利潤」,認為加州聯邦法院針對侵犯蘋果的設計專利涉及手機的外觀(如圓角長方形機身、用戶介面),判定需用侵權產品的全部銷售利潤來支付蘋果3.99億美元之設計侵權賠償金並不公平。蘋果則表示,蘋果手機的成功與其獨特的外觀有直接關係,三星故意抄襲蘋果的創新設計並因此大幅提升產品銷量,因此有權要求侵權產品之全部利潤。   三星和蘋果間的專利糾紛訴訟已持續多年,自2011年起,已發生多起關於智慧型手機、平板在技術、用戶介面及風格上之抄襲糾紛。目前兩家公司在本案庭審中仍各執己見,而美國最高法院預計將於明年(2017)6月作出判決。

英國財政部公告公眾諮詢結果回應,因效益不足決定停止推動綠色分類標準

英國財政部(HM Treasury)於2025年7月15日回應有關綠色分類標準(green taxanomy)實效性之公眾諮詢結果並發布評估結論。本諮詢於2024年11月啟動,旨在評估綠色分類標準能否有效達成「引導資金投入淨零轉型」及「預防漂綠行為(greenwashing)」之兩大目標。 以下說明利害關係人回饋意見重點內容: (1)引導資金投入淨零轉型 金融機構受訪者多認為分類標準並非引導資金流向之關鍵政策工具,僅能作為投資考量之其中一項參考依據,而對最終決策影響有限;並認為就特定產業制定去碳路線圖,同時闡明未來投資監理法規、補助獎勵計畫、稅制變革等,始為有效引導淨零轉型投資之政策措施。 (2)預防漂綠行為 跨國企業受訪者擔憂英國建立自身分類體系將導致國際標準更加零碎,同項經濟活動於不同司法管轄區可能被歸類為不同屬性,反而增添漂綠風險;並認為既有政策規範足以應對漂綠問題,如「競爭與市場管理局」(Competition Markets Authority, CMA)與「廣告標準管理局」(Advertising Standards Authority, ASA)為確保綠色聲明正確性所發布之相關指引等。 綜上所述,英國政府於審酌相關意見後,決定不再繼續推動綠色分類標準。於資源有限下,政府將專注於落實產業界認為對於加速淨零轉型投資具更高優先性與影響力之政策,同時持續評估是否需採取更多措施以預防漂綠行為。

TOP