世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。

  包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。

  在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性:

1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。

2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。

3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。

4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。

5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。

6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。

  綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

相關連結
你可能會想參加
※ 世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8890&no=57&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
科法觀點
你可能還會想看
歐盟執委會發布關於歐洲境內資料流監控之新研究

  歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。   在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。   該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量   該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。   作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。

黑莓機製造商因使用操作系統名稱縮寫為市場行銷而面對商標爭議

  自2005年7月黑莓機的通訊服務-BlackBerry Messenger已成為廣受歡迎的社群網路服務;2010年黑莓機製造商RIM(Research in Motion) 正式使用縮寫BBM代表黑莓機的社群網路功能服務(BlackBerry Messenger),被加拿大廣播收視/聽率調查公司(BBM Canada)提出商標侵權訴訟。     BBM Canada成立於1944年,原名為Bureau of Broadcast Measurement,2001年更名為BBM Canada,自1944年起即使用BBM名稱代表其公司所提供的廣播訊息服務,至今已超過60年。並於2007年取得加拿大註冊商標,指定使用於相關測量服務;BBM Canada並於申請時註明,BBM最早使用於加拿大的日期為2005年3月31日。     RIM於2009年申請加拿大商標註冊-BBM(申請號:1455487),指定使用於通訊服務及電腦軟體等產品及服務,至今仍為調查程序階段。此外,RIM先前亦使用BBX為操作系統系列商標名稱,被美國聯邦法院- US federal court in Albuquerque 宣告臨時禁制令。 RIM日前主張,BBM的商標申請尚未被加拿大智慧局(CIPO-Canadian Intellectual Property Office)駁回,且RIM與BBM Canada兩家公司間並無任何競爭關係,而雙方所提供的服務亦無重疊,故依據加拿大商標法,雙方應可同時併存及使用BBM為表彰兩家的產品及服務上。

德國聯邦經濟與能源部提出《GAIA-X計畫》建立歐洲聯合雲端資料基礎建設

  2019年10月29日,德國聯邦經濟與能源部提出GAIA-X計畫(Project GAIA-X),蒐集德國聯邦政府、產業和科學界代表意見,與歐洲夥伴合作共創高性能、具競爭力、安全可信賴的歐洲聯合雲端資料基礎建設平台。GAIA-X計畫被視為歐洲開放、透明的雲端數位生態系統搖籃,用戶得以在可信任的環境中,提供整合安全的共享資料;透過雲端資料的跨國合作,為歐洲國家、企業和公民創造聯邦資訊共享環境、促進數位創新、建構全新商業模式。GAIA-X計畫將嚴格遵循資料保護、公開透明、真實性與可信賴性、數位主權(Digital Sovereignty)、自由市場與歐洲價值創造、系統模組化及互操作性(Modularity and Interoperability)、資料可用性等歐洲價值觀及原則。   GAIA-X計畫設定的目標包括:1.維護歐洲數位主權;2.減少對外國雲端供應鏈依賴;3.拓展歐洲雲端服務的國際市場;4.塑造創新數位生態系統。透過建立資料技術與數位經濟相關的基礎設施,將統一安全規格的雲端技術,落實在公共管理、衛生部門、企業和科研機構用戶與供應商間,形成開放數位資料共享的大平台。另外,GAIA-X計畫能進一步強化歐洲雲端服務供應商及歐洲商業模式的全球競爭力與規模,透過聯合雲端資料基礎建設,連接歐洲大小型企業、公部門、醫療及金融機構的伺服器,將全歐洲對於數位技術的多項投資串連在一起,積極發展AI人工智慧、智慧醫療、數位金融監管等新興產業,得以確保歐洲數位安全並提高雲端資料處理能力。

美國通過最新的電子醫療紀錄之隱私與安全標準

  美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。     這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。     在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。

TOP