世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。
包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。
在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性:
1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。
2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。
3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。
4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。
5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。
6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。
綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

英國交通部(Department for Transportation, DfT)於2023年8月30日提出「交通行動服務(MaaS)實務準則(Mobility as a Service: code of practice)」,內容針對MaaS之提供商,提出產品及服務建議。MaaS實務準則涵蓋包含以下五個面向,以提供MaaS廠商具體明確的產品設計及營運建議: 1. 交通包容性與近用性(accessibility),例如應盡力避免產品之AI演算法產生偏見、確保AI學習資料無偏差;產品介面應提供視覺、聽覺輔助功能;針對身障民眾應提供適當之交通路線建議,以及應提供偏鄉、無網路區域非線上(offline)服務管道; 2. 低碳運輸之推廣,如納入更多步行、單車等環保交通選項; 3. 友善之多元支付方式,如現金、數位支付、定期套票,並整合火車、地鐵、客運、公車之支付系統; 4. 資料分享與資料安全並重,保障使用者隱私,如採用公認之資料安全標準以及與同業簽訂資料共享契約; 5. 重視消費者權益保障,鼓勵平台間公平競爭,如釐清各參與者間之責任,避免消費者投訴無門,以及提供線上及非線上聯絡窗口,及時處理消費者需求等。
「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例 愛爾蘭資料保護委員會發布《控制者資料安全指引》,提供資料控制者關於個人資料安全措施之依循指引愛爾蘭資料保護委員會(Ireland's Data Protection Commission)於今(2020)年2月公布控制者資料安全指引(Guidance for Controllers on Data Security),愛爾蘭資料保護委員會表示本指引亦適用於資料處理者。指引內針對17個面向說明控制者於資料處理時應考量之安全措施,分別為:(1)資料蒐集與留存政策(Data Collection and Retention Policies);(2)存取控制(Access Controls);(3)螢幕保護程式(Automatic Screen Savers);(4)加密(Encryption);(5)防毒軟體(Anti-Virus Software);(6)防火牆(Firewalls)(7)程式修補更新(Software Patching);(8)遠端存取(Remote Access);(9)無線網路(Wireless Networks);(10)可攜式設備(Portable Devices);(11)檔案日誌及軌跡紀錄(Logs and Audit Trails);(12)備份系統(Back-Up Systems);(13)事故應變計畫(Incident Response Plans);(14)設備汰除(Disposal of Equipment);(15)實體安全(Physical Security);(16)人為因素(The Human Factor);(17)認證(Certification)。 此外,愛爾蘭資料保護委員會還強調,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第25條與第32條有關資料控制者之義務,可透過「從設計與預設機制著手資料保護(Data protection by design and by default)」,與適當的技術及組織措施等方式,並考量現有技術、執行成本、處理之本質、範圍、脈絡及目的與對當事人權利及自由之風險可能性與嚴重性等因素,以確保其安全措施符合相應資料風險之安全等級。 最後,愛爾蘭資料保護委員會表示資料控制者更應確保其組織內員工瞭解該等安全措施並確實遵守,資料控制者應於制定其資料安全政策時考量到本指引所列各項目,以履行其保護資料安全之義務。
美國FDA公布510(k)醫療器材上市前許可指引針對醫療器材上市前之審查規範提出更完善詳細之調整