英國數位文化傳媒和體育部(Department for Digital, Culture, Media & Sport, DCMS)於2022年11月23日發布新聞稿,宣布英國與韓國共同簽署的資料橋接規則(The Data Bridge Regulation)於同年12月19日正式生效。在此之前,英國於2022年7月5日已與韓國個人資料保護委員會(Personal Information Protection Commission, PIPC)簽署資料適足性協議(Data Adequacy Agreement),以促進兩國未來進行資料傳輸。這也是英國在脫歐後,首次與其他國家簽訂的資料協議,而依據過往兩國的數位貿易統計資料,本次協議預估將帶來超過14.8億英鎊的商機。
英國DCMS部長更進一步表示,未來將積極與其他國家的戰略夥伴,開展資料經濟商機。英國於聲明中強調參與全球跨境隱私規則論壇(Global CBPR Forum)的決心,以加速資料共享、促進創新與產學研究,聲明摘要如下:
1、本協議為加強英國與韓國資料共享的里程碑,其宗旨為創建更值得信賴的資料共享環境,以及共創更安全的資料傳輸方式。
2、本協議耗時約一年完成討論與擬訂,並期待能透過該協議,深化並擴展英國與韓國之間的資料夥伴關係。
3、英國與韓國政府承諾將促進資料在國際商業、創新及研究等領域的發展。在加強個人資料保護的前提下,促進資料的合理利用。
4、在資料自由傳輸的基礎上,本協議將提供更完善且可持續推動的全球資料生態系統。雙方政府承諾共同改進數位時代下個資料保護框架,如英國發布國家資料戰略(National Data Strategy)、修訂UK GDPR相關規範,以及韓國PIPC提出個人資料保護法部分條文修正案等具體措施。
英國政府肯認應與其他戰略合作夥伴開展多邊倡議,如參與全球跨境隱私規則論壇(Global CBPR Forum)及經濟合作暨發展組織(OECD),共同推動可信賴之政府存取資料(Trusted Government Access to Data)的目標。
我國自2017年12月通過《金融科技發展與創新實驗條例》建立金融監理沙盒制度後,各界時有呼籲其他非金融領域亦有沙盒制度之需要。觀察國際上目前於金融產業以外採取類似沙盒制度之國家,當以日本為代表,且日本相關制度亦為我國《中小企業發展條例》修法時之參考對象。 本文針對日本近期提出之《生產性向上特別措施法》(草案)以及日本《產業競爭力強化法》新近之修法等兩項日本近來有關沙盒制度之修法為觀察對象,針對其整體立(修)法背景、《產業競爭力強化法》中灰色地帶解消制度及企業實證特例制度修正重點以及《生產性向上特別措施法》(草案)中「專案型沙盒」之制度內涵進行整理,並比較企業實證特例制度及專案刑沙盒兩者制度上之異同。 本文最後發現,日本之沙盒制度設計上確實符合其減少事前管制、強調事後確認與評估、建立風險控管制度、課與主管機關提供資訊與建議之義務以及強化業者與主管機關聯繫等目標。同時,本文認為日本沙盒制度中有兩項制度特色值得我國關注及參考。第一,日本成立了包含外部專家的「評價委員會」,協助政府單位了解創新事業之內容及法規制度之觀察。第二,日本未來將提高實證制度之協調層級,在日本內閣府下設立單一窗口協助申請者決定其可適用之實證制度。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
日本經產省和總務省共同發布AI業者指引草案,公開徵集意見因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下: (1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。 (2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。 (3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。
生物遺傳資源歸屬之國際規範分析