拜登政府首次發布「交通運輸業去碳藍圖」,宣示2050年前達成淨零碳排目標

  美國總統拜登(Joe Biden)於2023年1月10日首次發布「交通運輸業去碳藍圖」(The U.S. National Blueprint for Transportation Decarbonization),致力於2050年前達成交通運輸業淨零碳排目標。

  交通運輸業碳排放占美國碳排放總量三分之一,是二氧化碳的主要排放源,有鑒於此,是美國淨零路徑的優先重點對象。「交通運輸業去碳藍圖」是以《跨黨基礎建設法》(Bipartisan Infrastructure Law)和《降低通膨法案》(The Inflation Reduction Act)作為依據,這兩部法律代表美國願意對建立一個更安全、更永續的交通系統而做了歷史性投資。本藍圖由美國能源部、運輸部、住宅與都市發展部以及環保署共同訂定,列出交通運輸業整體淨零轉型的重要方向與架構,具體體現拜登政府力抗氣候變遷,誓言2035年達到100%潔淨電能、2050年實現淨零碳排放的目標。

  藍圖提出交通運輸業去碳策略的三大方針:

  (1)提升生活便利性。

  透過區域、州以及地方層級的基礎設施投資暨土地使用規劃,確保工作場所、購物中心、學校、娛樂以及各種生活服務設施皆在國民居住生活環境周邊。從而減少通勤時間、提供良好的步行與自行車發展環境、提升生活品質。

  (2)更高效的交通運輸系統。

  透過更高效的交通運輸系統暨潔淨能源運輸規劃,可有效降低氣候變化風險及其影響,確保構成整體性的均衡運輸系統,得以達成永續交通系統的目標。

  (3)推動零排放車輛。

  透過部署電動車充電或氫燃料補充設備計畫,推動低污染、使用清潔能源、油電混合車、氫燃料電池車等零排放車輛。

  藉由「交通運輸業去碳藍圖」,將可望完善綠色運輸規劃、減少消費者支出、改善公眾健康,同時保障國家能源安全,進而提升美國人民生活品質、環境永續性,並兼顧國家經濟的可持續發展。

  面對全球淨零排放浪潮,此藍圖值得讓同樣已宣示將和國際主流同步,達到2050淨零排放目標的我國,借鏡參考。

相關連結
※ 拜登政府首次發布「交通運輸業去碳藍圖」,宣示2050年前達成淨零碳排目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8962&no=57&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
英國人體基因資料庫(Biobank)開放給研究者使用

  為了改善下一世代的健康,資料來源係來自於半數英國人口的英國人類基因資料庫於今年三月底正式開放給所有研究者使用。該資料庫資訊包含二萬六千筆糖尿病患者、五萬筆關節疾病患者、四萬一千筆不飲酒者,以及一萬一千筆心臟病患者的健康資訊。   英國人體基因資料庫係利用四年的時間招募來自蘇格蘭、英格蘭與威爾斯地區,年紀介於四十到六十九歲的自願捐贈者,就其採集檢體、身高、體重、體脂肪、手握力、骨頭密度、心肺功能、血壓、醫療病例、生活習慣、記憶、飲食、生理與心理情狀、聽力與視力等資訊所集結的健康資料庫,其可堪稱是世界上積累大規模人類健康資訊的來源之一。   欲使用英國人體基因資料庫的申請者,不論其係來自英國或是海外,亦不論申請者係來自學界、產業界、公益團體,或是由政府資助的研究機關(機構)、團體或個人,在本於欲從事的研究係基於健康相關與確保公眾利益的前提之下,均可向該資料庫的管理單位提出使用申請。該申請必須於網路上提出,且欲申請使用之研究必須受到英國人類基因資料庫小組的嚴謹審查,且該審查過程亦會受到英國人體基因資料庫委員會轄下的 Access Sub-Committee所監督。除此之外,具有獨立超然特徵的英國人類基因資料庫倫理與管理會議(UK Biobank Ethics and Governance Council)亦將會監督整個審查系統的運作和流程。   英國人類基因資料庫將允許研究者,在基於保障公眾利益的前提下所進行的健康相關研究,來使用該資料庫內的所有資源。該資料庫期許研究者能夠發現特殊疾病發生於人類個體上的差異性,以進而研發出一套新的治療與防範措施。除此之外,該資料庫的資源利用亦期待研究者能在具有慢性、疼痛與生命威脅性特徵的疾病上,例如癌症、心臟疾病、中風、糖尿病、老人痴呆、憂鬱症、關節炎、眼睛、骨頭和肌肉等疾病,能夠就其發生原因、預防方法與治療方式找出新的診斷和解決方法。

梵諦岡與IBM、微軟聯合呼籲對臉部辨識等侵入性技術進行監管

  2020年2月28日梵諦岡教宗與兩大科技巨頭IBM及微軟聯合簽署「羅馬呼籲AI倫理道德」文件,支持制定人工智慧(AI)發展倫理與道德規範,並特別呼籲應針對臉部辨識等侵入性技術進行監管。在聯合文件上特別提及臉部識別技術潛在之濫用風險,例如警察會使用臉部辨識系統調查犯罪行為、《財富》500強公司使用AI審查求職者,這兩個例子均具有潛在且高度之風險,使用不正確或是具有偏見之AI判斷均可能會造成傷害。誠如方濟各在致辭中說:「人工智慧記錄個人資料,並使用於商業或政治目的,而且通常是在個人不知情之情況下,這種不對稱,將使少數人了解我們的一切,但我們卻對他們一無所知,這將使批判性思維和對自由的自覺變得遲鈍,不平等現象急遽擴大,知識和財富在少數人手中累積,將對民主社會構成重大風險。」   此次會議希望在國家與國際層面上共同努力促進AI道德規範,並根據以下原則來發展和使用人工智慧。第一,良好的創新:人工智慧系統必須是可理解得,並且在包容性方面必須考慮到所有人的需求,以便每個人都能受益。第二,責任:設計和實施人工智慧者必須承擔責任和保持透明度。第三,公正性:避免根據偏見進行創造或採取行動,從而維護人類平等和尊嚴。第四,可靠性:人工智慧系統必須能夠可靠的運行。第五,安全和隱私:人工智慧系統必須安全運行並尊重用戶的隱私。   目前尚不清楚其他技術公司是否會簽署該文件,以及簽署人將如何實施,但教宗與兩大科技巨頭史無前例的合作,為人工智慧未來發展方向提供遠見卓識,能更加深入的去思考AI的道德意涵以及它將如何與人類更好的合作、互動,互利共生,相輔相成。

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).

日本經產省為了促進智慧家庭(smart home)計畫,以促進資料共享與利用。

  經產省為了在智慧家庭領域創造新事業,整備相關資料活用環境,蒐集共有及分析從多種多樣機器及服務所實際產出之資料,於2017年8月開始實施實證實驗。在實施前,為了使參加實證之民間公司間,得為資訊合作而完備相關規則及保安對策,於5月24日召開「智慧家庭資料活用環境整備推進事業」檢討會。因物聯網(IoT)的擴大得以蒐集龐大資料,以及現在人工智慧(AI)解析能力提高下,期待在各種領域提高生產效率及創造新的事業模式。特別是在智慧家庭領域,其在「新產業構造願景的中間整理」(2016年4月27日、產業構造審議會新產業構造部會)中,為有力重要領域。因此,以IoT技術等使家庭內機器網路化,活用此一資料,除了使既存事業模式發生變革或創造新事業模式外,也期待可以透過把握製品之使用資訊,而提高產品回收(recall)率,並促進資源回收以及家庭部門節能化等相關社會課題解決上。為此,本事業係以對於家庭內機器網路化及透過此而創造新事業為目標,整備事業環境與社會課題及各主題新事業服務創造相連結,因應每個人的生活模式而使得生活空間客製化成為可能,實現智慧家庭之社會目標。

TOP