歐盟法院(Court of Justice of the European Union, CJEU)於2023年12月14日對Gemeinde Ummendorf(C‑456/22)案作出判決。歐盟法院試圖釐清《歐盟一般個人資料保護規則》(General Data Protection Regulation, GDPR)第82條的民事求償規範中,資料主體受到非財產上的損害要到何種程度才可獲得賠償。
本案源自於兩位自然人原告與德國的烏門多夫市政府(Municipality of Ummendorf)之間的紛爭。2020年,烏門多夫市政府未經兩位原告同意情況下,在網路上公布市議會議程與行政法院判決,這些資訊內容均多次提及兩位原告的姓名與地址。兩位原告認為市政府故意違反GDPR,因此依據GDPR第82條請求市政府賠償,並進一步主張該條意義下的非財產損害,不需要任何損害賠償門檻。然而,市政府則持相反意見。
長久以來,德國法院傾向認為,GDPR的非財產上損害需要超過某個「最低損害門檻」才可獲得賠償。然而,承審法院決定暫停訴訟程序,並將是否應有「最低損害門檻」以及其基準為何的問題,提交給歐盟法院進行先訴裁定。
歐盟法院考慮到,GDPR的宗旨在於確保在歐盟境內處理個人資料時對自然人提供一致和高水準的保護,如要求損害必須達到一定的嚴重性閾值或門檻才可賠償,恐因為成員國法院認定的基準不同,進而破壞各國實踐GDPR 的一致性。因此,歐盟法院最後澄清,GDPR的民事賠償不需要「最低損害門檻」,只要資料主體能證明受有損害,不論這個損害有多輕微,都應獲得賠償。
英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
何謂「日本A-STEP計畫」?日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。 研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。
企業監看員工網路活動法律爭議之防堵