澳洲政府於2023年12月通過身分核驗法(Identity Verification Services Act 2023,以下稱IVS法)及其相應修正案(Identity Verification Services (Consequential Amendments) Act 2023,以下稱修正案)。聯邦政府考量IVS法案將影響既有法規,同時提交修正案,兩法案旨在建構身分核驗服務架構,促進驗證流程之監管與透明化。澳洲政府規劃之數位身分系統正逐步法制化,IVS法與同年11月通過之法定聲明修正案(Statutory Declarations Amendment Act 2023)將為該系統奠定基礎。修正案涉及2005年澳洲護照法,以下僅簡要介紹IVS法之驗證服務內涵。
該法規定三項聯邦政府部門可提供之身分驗證服務:文件核驗服務(Document Verification Service, DVS)、臉部核驗服務(Face Verification Service, FVS)與臉部識別服務(Face Identification Service, FIS),並授權相關部門發展對應之認證設施,以電子通訊方式確認身分核驗請求。請求身分驗證服務需獲個人明確同意並告知相關權利後方可進行,其驗證型態分為:核驗(Verification)與識別(Identification),前者涉及確認個人為所宣稱之身分的過程,以一對一比對回傳個人所稱是否為真;後者則為識別個人身分之過程,透由多人或多份文件逐一比對後回傳個人身分。文件核驗使用頻率及範圍最廣泛,公、私部門皆可申請使用;臉部核驗目前僅聯邦政府有使用權限,地方與州政府及私部門未來將可透過書面協議參與。臉部識別因其驗證方式涉及個資使用與隱私議題,請求者限於證人保護機構、執法或情報人員。
IVS法案及其相應修正案於2023年9月提送國會討論,同年12月經參、眾兩院通過。法案審議期間曾有倉促立法的爭議,有論者認為當局急於為公、私部門行之有年的身分核驗行為提供法規依據,並安排極短的法案辦論時間以限縮討論。
英國文化、媒體暨體育部2017年3月8日發布「次世代行動技術:英國的5G策略」,此舉將會加速英國網路基礎建設更新並促進智慧聯網之發展。這份策略書提出了幾個重要方面來採取行動: 建構經濟實例:英國政府計畫建立新的5G試驗場,和企業共同合作發展5G科技。此試驗場預計同時在城市和偏遠地區進行,以了解不同地區環境下建設的效益,且與Ofcom合作了解目前環境與法規障礙。 調適法規:政府會持續檢查相關法規是否需要修正,並與試驗場合作了解現行法規是否適當。 地方區域的治理與能力建構:意識到地方區域於建構基礎建設的重要性,因此英國政府正在諮詢地方政府如何在地方區域進行5G建設,將會將地方政府、政府部門、土地擁有者和企業等集合組成工作小組進行5G策略的諮詢。 覆蓋率與能力匯流:政府將於2017年底前了解人類生活、工作與旅遊需達成之高品質覆蓋率要素,並於2025年前達成這些要素目標。 確保安全的5G布建:5G試驗場將會與重要安全組織如國家網路安全中心合作,以支持和發展新的安全建築來達到消費者對於5G的期待與需求。 頻譜:政府將要求Ofcom檢視現行頻譜授權策略並於2017年底提出報告,以促進4G至5G轉型。 科技與標準:政府將會持續和標準機關合作,監督市場安全與供應者的發展。
美國專利商標局結束專利申請審查後試行程序美國專利商標局(United States Patent and Trademark Office, USPTO)於2017年1月12日宣布其不再依其審查後試行程序(Post-Prosecution Pilot Program, P3 Program)受理新的案件。該程序係用以使發明人在專利申請程序受到駁回以後得提出更多回饋意見,以期減少上訴至專利審判暨上訴委員會(Patent Trial and Appeal Board, PTAB)之數量。 該程序係在2016年7月11日公布施行,在該程序中,申請人在最終駁回做成後兩個月內得請求召開聽證;申請人得對審查員進行20分鐘內之口頭簡報。簡報進行完畢以後,申請人即被排除於會議之外,審查委員之裁決將會以書面之形式通知申請人。 在P3程序創設以前,專利申請被駁回的發明人得採取上訴前先期審查會議試行計畫(Pre-Appeal Brief Conference Pilot Program)或是最終審議後試行程序2.0(After Final Consideration Pilot 2.0, AFCP2.0)的方式提出明顯錯誤的爭執或是申請內容的修改,但這兩種申訴方式並無法讓申請人取得直接向專利審查員進行簡報的機會。 在2016年7月11日公布本項試行程序時,USPTO即宣布本項計畫試行時間直到2017年1月12日,或是USPTO受理1600位合格申請為止,在本計畫按照預定時程結束後,USPTO表示將會依公眾回饋意見以及試行程序的結果來決定未來是否會施行類似於本計畫之措施。
歐盟發布數位身分皮夾信賴方登錄實施規則,健全數位信任生態系歐盟執委會於2025年5月6日發布《數位身分皮夾信賴方登錄實施規則》(Commission Implementing Regulation (EU) 2025/848 Laying down Rules for the Application of Regulation (EU) No 910/2024 of the European Parliament and of the Council as regards the Registration of Wallet-Relying Parties)(下稱實施規則),旨在幫助數位身分皮夾(Digital Identity Wallet)用戶確保其身分資料傳輸至可信賴對象,且傳輸之資料並未超過預期用途。 實施規則規範重點如下: (1)建置及維運登錄資料庫:會員國應建置皮夾信賴方(wallet-relying party)登錄資料庫,並指定登錄管理員負責管理及維運。 (2)訂定登錄政策及程序:會員國應訂定登錄政策,內容須涵蓋皮夾信賴方註冊時之身分識別及核實程序、登錄程序所需配套文件及佐證資料、用以確認皮夾信賴方提供資訊正確之真實來源、皮夾信賴方之救濟機制、驗證已註冊信賴方身分之規則及程序,並盡可能採自動化流程。 (3)申請登錄所需資訊:皮夾信賴方申請登錄時應提供之資訊,包括與官方身分紀錄一致之姓名或組織名稱、身分識別資料(如國民身分識別碼、商業登記號碼、加值營業稅號、歐盟經濟營運者註冊及識別碼(Economic Operator Registration and Identification Number))、地址、聯絡資訊、服務類型描述、針對各項預期用途擬請求之資料清單、是否為公務機關等。 (4)簽發相關憑證:會員國應授權至少1家憑證機構簽發皮夾信賴方存取憑證(access certificate),以確認皮夾信賴方之身分。會員國另得授權憑證機構簽發皮夾信賴方登錄憑證(registration certificate),以證明皮夾信賴方所取得之資料未超過預期用途。 (5)暫停或取消登錄資格事由:若有登錄資訊不實、違反登錄政策、請求資料超過預期用途等情事,將暫停或取消皮夾信賴方登錄資格。 (6)紀錄保存年限:登錄及憑證簽發紀錄應保存10年。 此實施規則已於2025年5月27日生效,將於2026年12月24日施行。
解析雲端運算有關認驗證機制與資安標準發展解析雲端運算有關認驗證機制與資安標準發展 科技法律研究所 2013年12月04日 壹、前言 2013上半年度報載「新北市成為全球首個雲端安全認證之政府機構」[1],新北市政府獲得國際組織雲端安全聯盟( Cloud Security Alliance, CSA )評定為全球第一個通過「雲端安全開放式認證架構」之政府機構,獲頒「2013雲端安全耀星獎」(2013 Cloud Security STAR Award),該獎項一向是頒發給在雲端運用與安全上具有重要貢獻及示範作用之國際企業,今年度除了頒發給旗下擁有年營業額高達1200億台幣「淘寶網」的阿里巴巴集團外,首度將獎項頒發給政府組織。究竟何謂雲端認證,其背景、精神與機制運作為何?本文以雲端運算相關資訊安全標準的推動為主題,並介紹幾個具有指標性的驗證機制,以使讀者能瞭解雲端運算環境中的資安議題及相關機制的運作。 資訊安全向來是雲端運算服務中最重要的議題之一,各國推展雲端運算產業之際,會以提出指引或指導原則方式作為參考基準,讓產業有相關的資訊安全依循標準。另一方面,相關的產業團體也會進行促成資訊安全標準形成的活動,直至資訊安全相關作法或基準的討論成熟之後,則可能研提至國際組織討論制定相關標準。 貳、雲端運算資訊安全之控制依循 雲端運算的資訊安全風險,可從政策與組織、技術與法律層面來觀察[2],涉及層面相當廣泛,包括雲端使用者實質控制能力的弱化、雲端服務資訊格式與平台未互通所導致的閉鎖效應(Lock-in)、以及雲端服務提供者內部控管不善…等,都是可能發生的實質資安問題 。 在雲端運算產業甫推動之初,各先進國以提出指引的方式,作為產業輔導的基礎,並強化使用者對雲端運算的基本認知,並以「分析雲端運算特色及特有風險」及「尋求適於雲端運算的資訊安全標準」為重心。 一、ENISA「資訊安全確保架構」[3] 歐盟網路與資訊安全機關(European Network and Information Security Agency, ENISA)於2009年提出「資訊安全確保架構」,以ISO 27001/2與BS25999標準、及最佳實務運作原則為參考基準,參考之依據主要是與雲端運算服務提供者及受委託第三方(Third party outsourcers)有關之控制項。其後也會再參考其他的標準如SP800-53,試圖提出更完善的資訊安全確保架構。 值得注意的是,其對於雲端服務提供者與使用者之間的法律上的責任分配(Division of Liability)有詳細說明:在資訊內容合法性部分,尤其是在資訊內容有無取得合法授權,應由載入或輸入資訊的使用者全權負責;而雲端服務提供者得依法律規定主張責任免除。而當法律課與保護特定資訊的義務時,例如個人資料保護相關規範,基本上應由使用者與服務提供者分別對其可得控制部分,進行適當的謹慎性調查(Due Diligence, DD)[4]。 雲端環境中服務提供者與使用者雙方得以實質掌握的資訊層,則決定了各自應負責的範圍與界限。 在IaaS(Infrastructure as a Service)模式中,就雲端環境中服務提供者與使用者雙方應負責之項目,服務提供者無從知悉在使用者虛擬實體(Virtual Instance)中運作的應用程式(Application)。應用程式、平台及在服務提供者基礎架構上的虛擬伺服器,概由使用者所完全主控,因此使用者必須負責保護所佈署的應用程式之安全性。實務上的情形則多由服務提供者協助或指導關於資訊安全保護的方式與步驟[5]。 在PaaS(Platform as a Service)模式中,通常由雲端服務提供者負責平台軟體層(Platform Software Stack)的資訊安全,相對而言,便使得使用者難以知悉其所採行的資訊安全措施。 在SaaS(Software as a Service)模式中,雲端服務提供者所能掌控的資訊層已包含至提供予使用者所使用的應用程式(Entire Suite of Application),因此該等應用程式之資訊安全通常由服務提供者所負責。此時,使用者應瞭解服務提供者提供哪些管理控制功能、存取權限,且該存取權限控制有無客製化的選項。 二、CSA「雲端資訊安全控制架構」[6] CSA於2010年提出「雲端資訊安全控制架構」(Cloud Controls Matrix, CCM),目的在於指導服務提供者關於資訊安全的基礎原則、同時讓使用者可以有評估服務提供者整體資訊安全風險的依循。此「雲端資訊安全控制架構」,係依循CSA另一份指引「雲端運算關鍵領域指引第二版」[7]中的十三個領域(Domain)而來,著重於雲端運算架構本身、雲端環境中之治理、雲端環境中之操作。另外CCM亦將其控制項與其他與特定產業相關的資訊安全要求加以對照,例如COBIT與PCI DSS等資訊安全標準[8]。在雲端運算之國際標準尚未正式出爐之前,CSA提出的CCM,十分完整而具備豐富的參考價值。 舉例而言,資訊治理(Data Governance)控制目標中,就資訊之委託關係(Stewardship),即要求應由雲端服務提供者來確認其委託的責任與形式。在回復力(Resiliency)控制目標中,要求服務提供者與使用者雙方皆應備置管理計畫(Management Program),應有與業務繼續性與災害復原相關的政策、方法與流程,以將損害發生所造成的危害控制在可接受的範圍內,且回復力管理計畫亦應使相關的組織知悉,以使能在事故發生時即時因應。 三、日本經產省「運用雲端服務之資訊安全管理指導原則」[9] 日本經濟產業省於2011年提出「運用雲端服務之資訊安全管理指導原則」,此指導原則之目的是期待藉由資訊安全管理以及資訊安全監督,來強化服務提供者與使用者間的信賴關係。本指導原則的適用範圍,主要是針對機關、組織內部核心資訊資產而委託由外部雲端服務提供者進行處理或管理之情形,其資訊安全的管理議題;其指導原則之依據是以JISQ27002(日本的國家標準)作為基礎,再就雲端運算的特性設想出最理想的資訊環境、責任配置等。 舉例而言,在JISQ27002中關於資訊備份(Backup)之規定,為資訊以及軟體(Software)應遵循ㄧ定的備份方針,並能定期取得與進行演練;意即備份之目的在於讓重要的資料與軟體,能在災害或設備故障發生之後確實復原,因此應有適當可資備份之設施,並應考量將備份措施與程度的明確化、備份範圍與頻率能符合組織對於業務繼續性的需求、且對於儲存備份資料之儲存媒體亦應有妥善的管理措施、並應定期實施演練以確認復原程序之有效與效率。對照於雲端運算環境,使用者應主動確認雲端環境中所處理之資訊、軟體或軟體設定其備份的必要性;而雲端服務提供者亦應提供使用者關於備份方法的相關訊息[10]。 参、針對雲端運算之認證與登錄機制 一、CSA雲端安全知識認證 CSA所推出的「雲端安全知識認證」(Certificate of Cloud Security Knowledge, CCSK),是全球第一張雲端安全知識認證,用以表示通過測驗的人員對於雲端運算具備特定領域的知識,並不代表該人員通過專業資格驗證(Accreditation);此認證不能用來代替其他與資訊安全稽核或治理領域的相關認證[11]。CSA與歐盟ENISA合作進行此認證機制的發展,因此認證主要的測試內容是依據CSA的「CSA雲端運算關鍵領域指引2.1版(英文版)」與ENISA「雲端運算優勢、風險與資訊安全建議」這兩份文件。此兩份文件採用較為概略的觀念指導方式,供讀者得以認知如何評估雲端運算可能產生的資訊安全風險,並採取可能的因應措施。 二、CSA雲端安全登錄機制 由CSA所推出的「雲端安全登錄」機制(CSA Security, Trust & Assurance Registry, STAR),設置一開放網站平台,採取鼓勵雲端服務提供者自主自願登錄的方式,就其提供雲端服務之資訊安全措施進行自我評估(Self Assessment),並宣示已遵循CSA的最佳實務(Best Practices);登錄的雲端服務提供者可透過下述兩種方式提出報告,以表示其遵循狀態。 (一)認知評價計畫(Consensus Assessments Initiative)[12]:此計畫以產業實務可接受的方式模擬使用者可能之提問,再由服務提供者針對這些模擬提問來回答(提問內容在IaaS、PaaS與SaaS服務模式中有所不同),藉此,由服務提供者完整揭示使用者所關心的資訊安全議題。 (二)雲端資訊安全控制架構(CCM):由服務提供者依循CCM的資訊安全控制項目及其指導,實踐相關的政策、措施或程序,再揭示其遵循報告。 資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。 另一方面,使用者也可以到此平台審閱服務提供者的資訊安全措施,促進使用者實施謹慎性調查(Due Diligence)的便利性並累積較好的採購經驗。 三、日本-安全・信頼性資訊開示認定制度 由日本一般財團法人多媒體振興協會(一般財団法人マルチメディア振興センター)所建置的資訊公開驗證制度[13](安全・信頼性に係る情報開示認定制度),提出一套有關服務提供者從事雲端服務應公開之資訊的標準,要求有意申請驗證的業者需依標準揭示特定項目資訊,並由認證機關審查其揭示資訊真偽與否,若審查結果通過,將發予「證書」與「驗證標章」。 此機制始於2008年,主要針對ASP與SaaS業者,至2012年8月已擴大實施至IaaS業者、PaaS業者與資料中心業者。 肆、雲端運算資訊安全國際標準之形成 現國際標準化組織(International Organization for Standardization, ISO)目前正研擬有關雲端運算領域的資訊安全標準。ISO/IEC 27017(草案)[14]係針對雲端運算之資訊安全要素的指導規範,而ISO/IEC 27018(草案)[15]則特別針對雲端運算的隱私議題,尤其是個人資料保護;兩者皆根基於ISO/IEC 27002的標準之上,再依據雲端運算的特色加入相應的控制目標(Control Objectives)。 [1]http://www.ntpc.gov.tw/web/News?command=showDetail&postId=277657 (最後瀏覽日:2013/11/20) [2]European Network and Information Security Agency [ENISA], Cloud Computing: Benefits, Risks and Recommendations for Information Security 53-59 (2009). [3]ENISA, Cloud Computing-Information Assurance Framework (2009), available at http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework . [4]ENISA, Cloud Computing-Information Assurance Framework 7-8 (2009). [5]ENISA, Cloud Computing-Information Assurance Framework 10 (2009). [6]CSA, Cloud Controls Matrix (2011), https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [7]CSA, CSA Guidance For Critical Areas of Focus in Cloud Computing v2 (2009), available at https://cloudsecurityalliance.org/research/security-guidance/#_v2. (last visited Nov. 20, 2013). [8]https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [9]日本経済産業省,クラウドサービスの利用のための情報セキュリティマネジメントガイドライン(2011),http://www.meti.go.jp/press/2011/04/20110401001/20110401001.html,(最後瀏覽日:2013/11/20)。 [10]日本経済産業省,〈クラウドサービスの利用のための情報セキュリティマネジメントガイドライン〉,頁36(2011)年。 [11]https://cloudsecurityalliance.org/education/ccsk/faq/(最後瀏覽日:2013/11/20)。 [12]https://cloudsecurityalliance.org/research/cai/ (最後瀏覽日:2013/11/20)。 [13]http://www.fmmc.or.jp/asp-nintei/index.html (最後瀏覽日:2013/11/20)。 [14]Information technology - Security techniques- Security in cloud computing (DRAFT), http://www.iso27001security.com/html/27017.html (last visited Nov. 20, 2013). [15]ISO/IEC 27018- Information technology -Security techniques -Code of practice for data protection, controls for public cloud computing services (DRAFT), http://www.iso27001security.com/html/27018.html (last visited Nov. 20, 2013).