紐約州總檢察長Letitia James於2024年1月5日與健康照護服務業者Refuah Health Center, Inc.(下稱Refuah公司)達成和解,主因為該公司遭受勒索軟體攻擊(ransomware attack),約25萬紐約州民個資遭到洩漏。和解協議要求Refuah公司支付共計45 萬美元之民事懲罰金及費用(penalties and costs),且應投資 120 萬美元加強網路安全(cybersecurity)。
Refuah公司主要業務為經營三家醫療機構和五輛行動醫療車(mobile medical vans)。2021 年 5 月,Refuah公司遭到勒索軟體攻擊,網路攻擊者得以近用數千名病人的資料,取得了包含姓名、地址、電話號碼、社會保險號碼、駕照號碼、出生日期、金融帳號、醫療保險號碼等資料。
依據檢察長辦公室的調查顯示,攻擊者之所以得近用這些資料,原因為 Refuah公司未採取適當安全維護措施,包括:未停用不活躍之使用者帳號(inactive user accounts);未定期更換使用者帳號憑證(user account credentials);未限制員工僅得近用其業務所必需之資源和資料;未使用多重要素驗證(multi-factor authentication)以及未加密病人資料。
依據協議內容,Refuah公司同意投資 120 萬美元,用於開發和維護更強大的資訊安全計畫(information security programs),以更妥適地保護病人資料。該協議還要求Refuah公司應:
1.維護全面的資訊安全計畫,以保護消費者資料的安全性、機密性和完整性;
2.實施並持續更新消費者資料近用限制相關政策和程序;
3.遠端近用資源和資料應使用多重要素驗證;
4.定期更新近用資源和資料的憑證;
5.至少每半年進行一次稽核,確保使用者僅近用其業務所必需之資源和資料;
6.對所有儲存或傳輸的消費者資料進行加密;
7.實施控制措施,監控和記錄公司網路和系統的所有安全和操作活動;以及
8.制定、實施和持續更新全面的事故應變計畫。
Refuah公司還須向州政府支付共計45 萬美元之民事懲罰金及費用,其中 10 萬美元將在該公司投入 120 萬美元開發和維護其資訊安全計畫後,得暫緩支付。
為促進綠色轉型並提高對投資人之保護,歐洲銀行監理機關(European Banking Authority, EBA)、歐洲保險與職業年金監理機關(European Insurance and Occupational Pensions Authority, EIOPA)及歐洲證券與市場監理機關(European Securities and Market Authority, ESMA)於2024年6月18日針對永續金融揭露規則(Sustainable Finance Disclosure Regulation),向歐盟執委會(European Commission)發布共同意見。 現行的永續金融揭露規則於2019年制定並於2021年生效,其目的在提高金融產品服務的 ESG 揭露透明度和標準化,透過要求金融市場參與者提供可靠且可比較的 ESG 資料,使投資者能夠做出更明智的投資決策,引導投資人重視環境與永續議題。現行的永續金融揭露規則係以「商品標籤」之方式揭露金融商品資訊,但共同意見中認為此標籤制度並未提供明確標準或門檻,使投資人無法充分了解為何特定商品具有永續性,導致漂綠(greenwashing)及相關投資風險。 因此,本次共同意見向執委會建議,執委會應建立投資人易於理解且具有客觀標準之金融商品類別,解決上述資訊落差疑慮。共同意見建議,金融機構可採用「永續(sustainable)」與「轉型(transition)」兩項金融商品類別。以下簡介共同意見就兩項金融商品類別提供之建議: 一、永續類別 永續類別係指金融商品投資於已達到環境或社會永續門檻之經濟活動或資產。共同意見提及,執委會或可考慮將永續類別再拆分為環境永續類別與社會永續類別;但若拆分兩項類別,可能必須注意目前環境永續與社會永續兩項類別得參考之指標發展程度不一,未來在訂定門檻時如何確認相關指標需進一步討論。 二、轉型類別 轉型類別係指金融商品投資於尚未達到環境或社會永續門檻,但未來將逐步提高其永續性以達到永續類別門檻之經濟活動或資產。共同意見建議,執委會於訂定轉型類別之門檻時,應參考經濟活動分類標準之關鍵績效指標、轉型計畫、商品減碳路徑及減緩主要不利影響之措施等因素。 目前執委會正評估利害關係人意見及永續金融揭露規則實施經驗,作為改善歐盟永續金融制度之依據,因此共同意見亦建議,執委會應先進行消費者調查,再著手後續規則修訂,方能達到制度優化之成果,保障投資人權益及永續發展。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國參議院通過「寬頻資料促進法」2008年10月,美國參議院通過「寬頻資料促進法」(Broadband Data Improvement Act),由總統簽署後施行。此新法賦予機關提升寬頻有關資料正確性的義務,以精確的資料作為相關政策制定時之衡量基準。美國政府認知,必須架構最完善的寬頻網路基礎,方能保持美國在科技領域的世界領先地位,因此聯邦政府有責任持續拓展寬頻接取網絡,並著手佈建次世代寬頻技術。而此前提,在於取得精確資料供後續施政依循。 以往美國聯邦通訊委員會(FCC)蒐集寬頻相關資料的方式,常被批評不合時宜,2008年3月FCC主動改善其蒐集資料的方式,要求寬頻業者必須透過地域性人口調查方式,提供使用者人數、速度、及技術類型等資料。此新法更要求FCC表列出欠缺寬頻設施的地區,兼調查該等地區人口及收入水準,而改善寬頻接取的情形,為加速佈建寬頻環境的第一步。 除此以外,新法的要求尚包括:1、美國商業部及其他機關應促進所蒐集相關資料的正確性,以擬定較妥適政策來提升寬頻技術架構;2、FCC針對寬頻佈建展開年度例行調查,以五碼郵遞區為一地理單位,列出尚未有寬頻的地區。並依據未有寬頻服務地域的人口數據,劃定可提供最多連線且傳輸高畫質影像的寬頻服務層級。此外,研究其他25個國家與美國寬頻服務的異同點;3、美國國勢調查局(Census Bureau)應持續調查社區居民是否擁有電腦,採取撥接或寬頻連線;4、設置補助金來促進網路普及。 惟有評論家指出,該法雖立意甚佳,但直至下個會計年度通過配套法案前,政府根本沒有足夠預算可執行此法律,該法可能只是政策測溫,並無太大實質效益。