2024年保護美國人資料免受外國對手侵害法案(Protecting Americans’ Data from Foreign Adversaries Act of 2024, PADFA)於2024年6月生效。該法案為美國國家安全補充法案(H.R. 815, the National Security Supplemental)的一部分。美國總統拜登在2024年4日24日簽署通過國家安全補充法案以及該法案所包含的PADFA,而PADFA將於簽署日後60天發生效力。
PADFA禁止資料經紀人將美國人民的敏感個資(personally identifiable sensitive data)傳輸到指定的外國對手國家,以及由這些國家控制的實體,如公司等。
PADFA所指之資料經紀人(data broker),是指以出售、授權、租賃、交易、轉讓、發布、揭露、提供存取權或其他方式,將個人資料提供給特定實體,並收取對價者。而該法所稱之敏感個資,定義則相當廣泛,從個人日常活動資料如行事曆資訊、電子郵件,到個人醫療、財務資料皆包含在內。
目前PADFA指定之外國對手國家,是引用自美國法典第十編4872(d)(2)條(4872(d)(2)of title 10, United States Code.),包含中華人民共和國、朝鮮民主主義人民共和國、俄羅斯聯邦、伊朗伊斯蘭共和國。而外國對手國家控制的實體則包含以下幾類 :
1.前述國家擁有20%以上所有權的實體。
2.主要營業據點、總部、住所位於前述國家的實體。
3.依前述國家法律建立的實體。
4.受前述國家指導、控制之人。
由於PADFA適用範圍廣泛,未來美中兩國資料傳輸將受更多限制。該法案生效後將由美國的聯邦貿易委員會(Federal Trade Commission)執行,該委員會將有權對違規者進行民事處罰。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國防部「人工智慧國防運用倫理準則」美國國防部(Department of Defense)於2020年2月採納由美國國防創新委員會(Defense Innovation Board, DIB)所提出之「人工智慧國防運用倫理準則(AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense)」,以衡平倫理與人工智慧於國防帶來之增益。 美國國防創新委員會為美國聯邦政府下之獨立委員會,設置目的在於依美國新創科技,提供意見予美國國防部,與美國國防部並無隸屬關係。有鑑於人工智慧之運用範疇日益增廣,美國國防創新委員會遂提出旨揭「人工智慧國防運用倫理準則」,以因應人工智慧於國防之應用所產生之問題。 倫理準則適用於「戰爭或非戰爭用途之人工智慧之設計以及應用」,對於「人工智慧」之定義,倫理準認為人工智慧並無精確之範疇,只要「對於資訊有所處理並旨在達到所賦予任務之資訊系統」,皆為本準則下之人工智慧。倫理準則指出,「人工智慧」與美國國防部3000.09指令下之「自動化武器系統(Autonomous Weapon System)」之定義不同,但有可能重疊,而所謂「自動化武器系統」為「一經人類選擇啟動,即可在無人類監督之情形下,自動針對目標進行鎖定或進行攻擊之自動化武器系統」。 美國國防創新委員會表示,該準則旨在切合美國既有憲法、法律、國際公約之傳統標準下,融入現代化對於人工智慧之要求,如國際公約中之戰爭法(Law of War)即為本準則之傳統標準之一,舉例而言,如人工智慧被裝置於武器中,其設計及應用應符合最小傷亡原則、避免傷及無辜原則等。 除此之外,準則亦包含以下現代化對於人工智慧之要求:(1)人類對於人工智慧系統之設計、應用以及使用應善盡判斷以及注意義務,且人類應該對於人工智慧系統因瑕疵所帶來之傷害負擔最終責任;(2)對於目標之選擇或分類,應維持公平性,且不得有歧視性;(3)對於人工智慧之設計、應用以及使用,應有明確之工程標準以及資料保存程序,此一工程標準以及資料保存程序應為一般具有專業知識之工程人員可據以理解、分析、追蹤問題所在並加以改善;(4)「戰爭或非戰爭用途之人工智慧」應有明確之應用領域,且完善之檢測、維修,應適用於該人工智慧之全部生命週期。
英國成立英國衛生與社會照護資訊中心整合政府醫療資訊隨著英國國家健康服務(National Health Service, NHS)的改革,衛生和社會照護法(The Health and Social Care Act 2012)第九部分第二章,規範成立英國衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為政府醫療資訊公開、整合與管理單位,此項規定於今(2013)年4月1日生效。 HSCIC並非正式的政府部會,而屬於執行行政法人(Executive Non Departmental Public Bodies),向衛生部長(Secretary of State for Health)負責,其職責除了蒐集、分析和傳播國家資料暨統計資訊以外,同時亦進行國家各層級的醫療資訊基礎設施的整合,作為醫療資訊數據公開的門戶;此外,HSCIC利用其行政法人的特性,將醫療組織視為客戶,提供不同的服務和產品,以協助其達到所需的資訊管理需求。透過HSCIS對於資訊的整合再公開,有助於在增進政府資訊透明性的同時,亦保障了資訊流動的效率和安全性。 其中HSCIC對於敏感性資料之應用,特別設立資料近用諮詢小組(Data Access Advisory Group, DAAG)予以處理。資料諮詢小組是每月定期由HSCIC所主持的獨立運作團體,須向HSCIC委員會負責。當HSCIC面臨敏感性資料或可識別個人資料之應用(包括是為了研究目的,和為了促進病人的醫療照護所需之應用)時,即交由資料近用諮詢小組會議來討論,以確保揭露該項資訊的風險降到最低。 從HSCIC的組織任務能輕易地發現其具有強大整合醫療資訊之功能,其未來發展勢必與過往飽受爭議的醫療資訊應用息息相關,因此相當值得我們持續觀察HSCIC的後續動態。
美國財政部發布「非銀行金融、金融科技和創新」之金融科技創新報告美國財政部於今(2018)年7月31日發布一份重要報告,呼籲對金融科技領域的創新要採取更靈活,更有利的監管方法。這份報告主題為「非銀行金融、金融科技和創新」,其內容提及加密貨幣和分散式帳本技術(Distributed Ledger Technologies,DLT),並指出該些技術正由金融穩定監督委員會(Financial Stability Oversight Council)的工作組來主導進行跨部門的研究。整體來說,該報告表明美國政府大力推動新興金融技術的發展,並使現有的監管框架現代化,主張更加精簡和適當的監督,以消除發展過程中的障礙。並對於可能阻礙金融科技發展的法規,提出合理化建議,包括協調各州間加密貨幣交易的資金移轉立法。 美國財政部提及金融服務業正在開發的一系列DLT應用程式,其優勢仍有高度不確定性,因而進一步倡導使用監理沙盒,並鼓勵創建實驗室、工作組、創新辦公室,和其他讓行業參與者直接接觸監管機構的管道。監管機構和創新者之間的共生關係,是支持美國經濟和保持全球競爭力所必需的。該報告最後結論提到美國必須與新興技術並肩一起進步,要以不限制創新的方式來適當調整原有的監管策略。美國監管機構必須比過去更加靈活地履行職責,不能給創新的發展帶來不必要的阻礙。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」