澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式

澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。

國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。

據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。

同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。

澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。

相關連結
你可能會想參加
※ 澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9431&no=57&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
2025年美國營業秘密管理重要實務

本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟執委會提議檢討WEEE法令規範,並修正回收目標

  歐盟執委會於所公告之電子電機廢棄物回收法令檢視報告(Review of an EU Directive on Recycling Waste Electrical and Electronic Equipment)中建議,對於產品製造商之回收目標規範標準,應從現行概括固定值:每年人均4kg(4kg/capita per year)回收目標,改為變動式比例值:以現行市場商品平均量之65%,作為規範目標並且,由於法令規範課予產品製造商強制回收責任,市場實務上,也出現了產品製造商為了達到WEEE要求規範目標值,轉而向民間回收業者收購「回收憑證(Recycling Certificates)」,並且,因為供需失衡問題,造成回收業者隨意喊價的情形,也多所見聞。     而歐盟執委會為進一步落實環境保護政策,還是打算維持原案,提議對於WEEE規範內容進行檢討修改,並建議各會員國於國內法令增加誘因及鼓勵措施,導引協助產品製造商擴大回收體系、檢視改善回收管理系統,而更具能力對於提高目標規範,能夠落實遵循之。歐盟執委會此項法令修改提議,是否得以真正落實未來立法中,值得再加以觀察。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

TOP