美國國家製造創新網絡2016年度報告

  依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。

  國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。

  我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。

本文為「經濟部產業技術司科技專案成果」

※ 美國國家製造創新網絡2016年度報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=7672 (最後瀏覽日:2025/03/16)
引註此篇文章
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

何謂「企業實證特例制度」?

  企業實證特例制度規定於日本產業競爭力強化法第8條、第10條、第14條及第15條,在企業或任何事業團體有進行新事業活動(引進新商品或服務之開發或生產、新商品或服務之導入)之需要時,若現行法規上有滯礙難行之處,則可提出創設新規制措施之申請,藉以排除某些法令之限制,使新事業活動得以進行。   企業實證特例制度分為兩階段,首先由欲實施新事業活動者向事業主管機關提出申請,而事業主管機關將會與法規主管機關討論後,在安全性得到確保之情形下,由事業主管機關同意創設新規制措施。第二階段則需提出新事業活動計畫申請核准,經核准後便得在一定期間內於一定地區進行新事業活動。   新事業活動計畫備核准後,事業團體得進行新事業之活動,其需於各事業年度終了後3個月內向事業主管機關提出報告,就新事業活動之進行情形(包含新事業活動目標達成程度、新特例措施施形狀況、法規所要求之安全性目的之確保措施…等事項)為報告。法規主管機關亦會綜合新事業活動之施形狀況、國外相關法制情形以及技術進步等等情形,決定是否進行修法。

歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用

  歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。   「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。   「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。   在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。   而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。   在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。

智慧電網重要法制議題研析探討及因應

TOP