數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。
於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。
本文為「經濟部產業技術司科技專案成果」
根據2005年一項統計調查指出,員工超過一千人的公司中,36.1%對員工從公司內部外寄的電子郵件加以監視,而同時亦有26.5%的公司正準備對員工由公司內部發送的電子郵件加以監視。若是以員工超過二萬人的公司來看,更有高達40%的公司已然利用過濾科技對員工外寄的電子郵件加以監視,而正準備利用相關科技對員工外寄的電子郵件加以監視的公司亦高達32%。 然而根據歐洲人權法院近日所做出的判決,不論公司是否訂有清楚的員工使用政策,一旦公司並未告知員工其在公司內的通訊或電子郵件往來可能會受到公司的監視,則該公司將可能違反歐洲人權公約(European Convention on Human Rights)。 該案例乃是由於一位任職於英國南威爾斯之卡馬森學院(Carmarthenshire College)的員工—Lynette Copland發現自己的網路使用情形及電話均遭到工作單位之監視,憤而向歐洲法院提出告訴。由於卡馬森學院並未提醒員工在工作場合之電子郵件、電話或其他通訊可能遭到監視,因此Lynette Copland之律師主張當事人在工作場合之電話、電子郵件、網路使用等其他通訊都應具有合理的隱私權期待,而受到歐洲人權公約第8條的保障。歐洲法院判決Lynette Copland可獲得約5910美元之損害賠償以及1,1820美元之訴訟費用。
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。
美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。