日本《科技創新成果活用法》

  為推動研發制度的改革並強化研發能力及效率,日本於2018年12月14日通過法律修正案,將原《研發力強化法》(研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律)更名為《科技創新成果活用法》(科学技術・イノベーション創出の活性化に関する法律),透過調整大學、國立研究開發法人(以下簡稱研發法人)的研究人員僱用制度、國家或人民安全相關研發預算的確保,以及研發法人投資科技研發成果之運用等相關制度的調整,以支持未來日本在科技創新研發能力的提升,以及研發成果的有效運用。

  本次修法最大的重點,為研發法人投資研發成果運用的明文化,過去在《研發力強化法》中,僅規定研發法人得進行有助於成果運用的出資或技術協助等業務(第43條之2),但對於是否能保有因出資或技術協助所取得之收入(例如股票),則由各研發法人以其設置法另為規範;本次修正之《科技創新成果活用法》,則於第34條之5明文規定研發法人不受獨立行政法人不得持有股票的限制,可持有其運用研發成果進行技術作價投資或成立新創,所取得之股票或新股認股權,確立研發法人在支持研發成果運用上的功能與角色。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本《科技創新成果活用法》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=8267 (最後瀏覽日:2024/02/28)
引註此篇文章
你可能還會想看
歐盟執委會發起ERA vs CORONA行動計畫,加速研發創新合作對抗COVID-19

  歐盟執委會於2020年4月7日發起ERA vs CORONA行動計畫,透過歐洲研究區(European Research Area, ERA)全力支持歐洲科研合作、共享科學資訊,並給予歐洲研究團隊與企業充足的研發疫苗資金,用以對抗COVID-19。歐盟執委會已與各國達成共識,確認ERA vs CORONA行動計畫的10項優先行動: 協調各國研究與創新(Research and innovation, R&I)資金投入,專注研發新型冠狀病毒的疫苗與治療方法,加強創新合作模式以對抗疫情。 支持新型冠狀病毒患者的臨床管理,與歐盟大規模臨床實驗計畫。 將資金投入創新領域回應社會需求,關注疫情對社會經濟、醫療及資通訊技術應用、衛生系統及製造業的影響。 藉由Horizon 2020 增加對新創公司的研發財務支持;拓展歐洲創新委員會ePitching計畫(EIC ePitching),鼓勵公私夥伴共同尋求解決方案。 創造資金來源促進R&I行動,引導新創及中小企業申請國家及地方資金、私人基金會、投資歐洲計畫(Invest EU)等。 建立ERA Corona平台,提供研發資金相關的一站式服務,包括歐盟各國補助新型冠狀病毒R&I計畫的完整資訊。 設立新型冠狀病毒特設高階R&I工作小組,規劃歐盟中長期防疫措施。 加強研究基礎設施布建及跨國資料庫利用。 創建歐洲COVID-19研究資料共享平台 ,連接歐洲開放科學雲,允許快速共享研究資料及成果以加速研發、公平分享資訊。 舉辦泛歐黑客松(EU vs Virus)推動歐洲創新與社會交流。

日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應

  日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。   依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。   針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。

國際保險公司探討奈米保險機制可行性

  特定奈米科技經歷研發階段過後,所獲致的成熟技術產品,要邁向市場商業化階段,能否真正成功,取決於市場消費大眾能否具有信心願意採用。而奈米科技由於新興發展存有未知之不確定風險,所以有論者開始規劃研擬,引進責任保險機制,藉由責任風險分散之功能,期望解決面對不確定風險時,能夠足以妥適因應。   依據國際最具份量之瑞士再保公司(Swiss Re) 對於奈米科技之保險機制,2008年出版「奈米科技:微小物質,未知風險(Nanotechnology--Small Matter, Many Unknowns:The Insurers' Perspective)」研究報告 ,其中明文點出,保險業(Insurance Industry)之核心業務即為移轉風險(Transfer of Risk),由保險公司(Insurer)經過精算程序後收取一定費用,適時移轉相關風險,並產生填補功能。   然而,保險業對於可藉由保險機制所分散之風險,亦有其極限範圍,如果超過以下三原則者,則會被認為超出可承擔風險範圍,屬保險業無力去承擔者,所以保險機制之引進將不具可行性: (1)風險發生之可能機率與發生嚴重程度,現行實務沒有可行方式能加以評估者。 (2)當危害產生時,所造成之影響為同時擴及太多公司、太多產業領域、或太廣的地理區域者。 (3)有可能產生的巨大危害事件,已超過私領域保險業所能承受之範圍者。   此外,為確保未來得以永續經營,保險公司對於願意承保之可保險性(Insurability)端視對於以下各因素性質之評估: (1)可加以評估性(Accessibility):對於所產生之損害係屬可評估,並得以加以計量化、允許訂出價格者(be Quantifiable to Allow Pricing)。 (2)無可事先安排者(Randomness):對於保險事故之發生,必須是不可預測者,並且其所發生必須獨立於被保險者本身主觀意志(the Will of the Insured)之外。 (3)風險相互團體性(Mutuality):相關保險者必須基於同時參加並組成共同團體性,藉以達到分擔分散相關風險性。 (4)經濟上可行性(Economic Feasibility):必須使私人保險公司藉由收取適宜保費,便得以支付對等之賠償費用,可以確保業務經營得以永續持續下去。   綜上所述,可以明瞭並非所有風險,保險公司均願意承保而能達到分散風險者,對於風險必須是可預測性並有承保價值,保險公司本身具有商業機制,依據精算原則確定願意承保之費用,此才可謂實務上可行,對於奈米科技引進保險機制之衡量思考,也當是如此。

搜尋引擎業者刪除特定檢索結果之判斷基準-日本最高法院平成28年(許)第45號(平成29年1月31日裁定)

TOP