「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。
在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。
英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。
技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
本文為「經濟部產業技術司科技專案成果」
菲律賓於今(2015)年05月13日發布共乘服務(如:Uber)新法令,成為全球第一個針對以APP招車及相關營運進行明確具體規範的國家。在該法令規範之下,車齡在七年以下之私人轎車、休旅車及小貨車得經如「優步」(Uber)或GrabCar等共乘服務公司之認證合格後參與營運。 菲律賓交通部長阿巴亞(Joseph Emilio Abaya)說明,根據全球資料庫 “Numbeo”公司之調查研究,由於首都馬尼拉(東南亞第二壅塞,僅次於印尼首都雅加達的城市)缺乏足夠的大眾運輸工具,故共乘服務有其需求及必要性。 「我們不應將共乘服務視為傳統計程車產業的損害者,而應該認為它可以提供更優質的服務、同時迫使傳統業者現代化及革新。」阿巴亞在本週就該規範即將施行的簡報中如此闡述。 總部設立於美國的「優步」(Uber),係全球最具價值之風險投資新創公司,估計市值400億美元。關於優步如何支付駕駛報酬、向乘客收取車資費用並確保其安全、以及違反交通法令規範等層面,業已在全球面臨諸多法律挑戰。共乘服務運用科技來連結市民利用其自有私家車與欲搭乘車輛之消費者,而傳統計程車經營者之忿怒則在於其毋須支付許可(執照)費、也毋須遵守當地相關規範。 優步考量到馬尼拉人口達1,500萬之眾,因此預期菲律賓將會是有利可圖的市場。優步菲律賓總經理Laurence Cua於接受路透社(Reuters)訪問時表示:「此次修法,係將消費者的安全置於優先考量,亦認同如優步這類型公司之價值,以及其運用科技改善城市運輸品質之能力。」 然而優步及其他同類公司發現:要在經濟快速成長的東南亞經營,未必是一件輕而易舉的事情。傳統計程車業者揚言要控告政府,以促其保護在馬尼拉攬客維生的27,000部計程車。 「世界各地政府均瞭解計程車業者投資多少於經營,卻僅有菲律賓的業者未受保護。」菲律賓全國計程車駕駛協會主席Jesus Manuel Suntay對路透社如是說。 根據日本獨立行政法人國際協力機構估計,馬尼拉因交通阻塞,每日生產力損失的價值高達5,700萬美元之譜。
日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。
英國Ofcom發布說明行動網路與Wi-Fi混合共享上層6 GHz 頻段重要性之文件,以最大化頻譜利用效率。英國通訊傳播管理局(The Office of Communications, Ofcom)於2024年5月21日發布「行動網路與Wi-Fi混合共享上層6 GHz 頻段之重要性」(Mobile and Wi-Fi in Upper 6 GHz: Why hybrid sharing matters)文件,指出為促進稀缺頻譜資源有效利用,需實施創新頻譜共享機制,以便為更多用戶提供服務。有鑑於2023年世界無線電通訊大會(World Radiocommunication Conference 2023, WRC-23)決議上層6 GHz(6425-7125 MHz)為國際行動通訊(International Mobile Telecommunications, IMT)使用頻段,同時承認該頻段可供Wi-Fi等無線接取系統(wireless access systems)使用,因此Ofcom初步探索出兩種可能分割方式,並於文件中分享,期望透過靈活混合共享機制,在與其他既有使用者共存之同時服務更多用戶: 1.可變頻譜分割(Variable spectrum split): 此方法將上層6GHz分割為Wi-Fi及行動網路優先頻段,Wi-Fi和行動網路可於各自優先頻段中自由布建,亦可於不干擾對方之前提下,於對方之優先頻段布建。 2.室內外分割(An indoor/ outdoor split): 此方法以建築物做為兩技術運作之分界,於室外及淺層室內(shallow indoor)區域布建6GHz行動網路,以降低既有3GHz行動通訊服務之負載;6GHz覆蓋不到之範圍,則仍由3GHz提供服務。室內大部分區域則分配給Wi-Fi布建,降低兩技術重疊布建情形,確保資源有效運用。 未來Ofcom將持續與業界合作開發其他混合共享框架技術與解決方案,計劃於2025年發布有關此主題之技術報告,早日實現行動網路與Wi-Fi之共享機制。
何謂「智慧機械」智慧機械產業為目前我國五大創新產業政策之一,主要目的是將臺灣從精密機械升級為智慧機械,爰此,行政院於105年7月核定「智慧機械產業推動方案」,整合我國豐沛的新創能量,建立符合市場需求之技術應用與服務能量,以創造我國機械產業下一波成長新動能。 智慧機械之定義係指整合各種智慧技術元素,使其具備故障預測、精度補償、自動參數設定與自動排程等智慧化功能,並具備提供Total Solution及建立差異化競爭優勢之功能;智慧機械的範疇包含建立設備整機、零組件、機器人、智慧聯網、巨量資料、3D列印、網實融合CPS、感測器等產業。而智慧製造係指產業導入智慧機械,建構智慧生產線(具高效率、高品質、高彈性特徵),透過雲端及網路與消費者快速連結,提供大量客製化之產品,形成聯網製造服務體系。 未來我國智慧機械與智慧製造領域仍待研發突破之項目有:工業用等級之視覺/觸覺/力感知等感測模組與驅動控制技術;微型感測元件智慧化;開放性標準網路通訊技術;機器型通訊及安全技術;耐延遲及低耗能機器聯網;健全人機智能介面,提升人機協同安全與效率;智慧聯網共通服務平台、資料分析與效能管理;網實融合智能系統需結合專業分析模型提升準確性及可靠度;機器人智慧整合能力及反應速度;供需產能整合與決策系統等等。