Taiwan Recent Regulatory Development- Promoting Biotech and New Pharmaceuticals Industry

Over the past twenty years, the Government has sought to cultivate the biopharmaceutical industry as one of the future major industry in Taiwan. Back in 1982, the Government has begun to regard biotechnology as a key technology in Technology Development Program, demonstrated that biotechnology is a vital technology in pursuit of future economic growth. Subsequently, the Government initiated national programs that incorporated biotechnology as a blueprint for future industrial development. In order to enhance our competitiveness and building an initial framework for the industry, The Executive Yuan has passed the Biotechnology Industry Promotion Plan. As the Government seeks to create future engines of growth by building an environment conducive for enterprise development, the Plan has been amended four times, and implemented measures focused on the following six areas: related law and regulations, R&D and applications, technology transfer and commercialization, personnel training, investment promotion and coordination, marketing information and marketing service.

In 2002, the Executive Yuan approved the Challenge 2008, a six-year national development plan, pointing out biotechnology industry as one of the Two Trillion, Twin Stars industries. The Government planned for future economic growth by benefiting through the attributes of the biotechnology: high-tech, high-reward and less pollution. Thus, since 1997 the Strategic Review Board (SRB) under the Executive Yuan Science and Technology Advisory Panel has taken action in coordinating government policies with industry comments to form a sound policy for the biotechnology industry.

Additionally, a well-established legal system for sufficient protection of intellectual property rights is the perquisite for building the industry, as the Government recognized the significance through amending and executing related laws and regulations. By stipulating data exclusivity and experimental use exception in the Pharmaceutical Affair Act, tax benefits provided in Statute for Upgrading Industries , Incentives for Production and R&D of Rare Disease Medicine, Incentives for Medical Technology Research and Development, provide funding measures in the Guidance of Reviewing Programs for Promoting Biotechnology Investment.

Clearly, the government has great expectation for the industry through establishing a favorable environment by carrying out these policies and revising outdated regulations. Thus, the Legislative Yuan has passed the “Act for The Development of Biotechnology and New Pharmaceuticals Industry” in June, 2007, and immediately took effect in July. The relevant laws and regulations became effective as well, driving the industry in conducting researches on new drugs and manufacturing new products, increasing sales and expanding the industry to meet an international level.

For a biopharmaceutical industry that requires long-term investment and costly R&D, incentive measures is vital to the industry’s survival before the product launches the market. Accordingly, this article will be introducing the recent important regulation that supports the biopharmaceutical industry in Taiwan, and analyzing the government’s policies.

Biotechnology is increasingly gaining global attention for its potential in building future economic growth and generating significant profits. In an effort to support the biotechnology industry in Taiwan, the Government has made a step forward by enacting the “Act for the Development of Biotech and New Pharmaceutical Industry”.

The biopharmaceutical industry is characterized as high-risk and high-reward, strong government support and a well-developed legal system plays a vital role from its establishment throughout the long term development. Therefore, the Act was enacted tailor to the Biotech and New Pharmaceutical Industry, primarily focuses on tax benefits, R&D activities, personnel recruitment and investment funding, in support of start-up companies and attracting a strong flow of funding worldwide.

To pave the way for promoting the biopharmaceutical industry and the Biotech and New Pharmaceutical Company, here the article will be introducing the incentive measures provided in the Act, and supporting development of the industry, demonstrating the efforts made by the Government to build a “Bio-tech Island”.

Reference

“Act for Development of Biotech and New Pharmaceutical Industry”, webpage of Law and Regulations Database of the Republic of China. 4 July, 2007. Ministry of Justice, Taiwan. 5 Nov. 2008 http://law.moj.gov.tw/Eng/Fnews/FnewsContent.asp?msgid=3180&msgType=en&keyword=undefined

※Taiwan Recent Regulatory Development- Promoting Biotech and New Pharmaceuticals Industry,STLI, https://stli.iii.org.tw/en/article-detail.aspx?d=6136&i=168&no=55&tp=2 (Date:2024/07/16)
Quote this paper
You may be interested
The Tax Benefit of “Act for Establishment and Administration of Science Parks” and the Relational Norms for Innovation

The Tax Benefit of “Act for Establishment and Administration of Science Parks” and the Relational Norms for Innovation   “Act for Establishment and Administration of Science Parks” was promulgated in 1979, and was amended entirely in May 15, 2018, announced in June 6. The title was revised from “Act for Establishment and Administration of Science ‘Industrial’ Parks” to “Act for Establishment and Administration of Science Parks” (it would be called “the Act” in this article). It was a significant transition from traditional manufacture into technological innovation.   For encouraging different innovative technology enter into the science park, there is tax benefit in the Act. When the park enterprises import machines, equipment, material and so on from foreign country, the import duties, commodity tax, and business tax shall be exempted; moreover, when the park enterprises export products and services, it will have given favorable business and commodity tax free.[1] Furthermore, the park bureaus also exempt collection of land rent.[2] If they have approval for importing or exporting products, they do not need to apply for permission.[3] In the sub-law, there is also regulations of bonding operation.[4] To sum up, for applying the benefit of the act, enterprises approved for establishment in science parks still require to manufacture products. Such regulations are confined to industrial industry. Innovative companies dedicate in software, big data, or customer service, rarely gain benefits from taxation.   In other norms,[5] there are also tax deduction or exemption for developing innovative industries. Based on promoting innovation, the enterprises following the laws of environmental protection, laborers’ safety, food safety and sanitation,[6] or investing in brand-new smart machines for their own utilize,[7] or licensing their intellectual property rights,[8] can deduct from its taxable income. In addition, the research creators from academic or research institutions,[9] or employee,[10] can declare deferral of the income tax payable for the shares distributed. In order to assist new invested innovative enterprises,[11] there are also relational benefit of tax. For upgrading the biotech and new pharmaceuticals enterprises, when they invest in human resource training, research and development, they can have deductible corporate income tax payable.[12] There is also tax favored benefits for small and medium enterprises in using of land, experiment of research, technology stocks, retaining of surplus, and additional employees hiring.[13] The present norms of tax are not only limiting in space or products but also encouraging in “research”. In other word, in each steps of the research of innovation, the enterprises still need to manufacture products from their own technology, fund and human resources. If the government could encourage open innovation with favored taxation, it would strengthen the capability of research and development for innovative enterprises.   Supporting the innovation by taxation, the government can achieve the goal of scientific development more quickly and encourage them accepting guidance. “New York State Business Incubator and Innovation Hot Spot Support Act” can be an example, [14]the innovative enterprises accepting the guidance from incubators will have the benefit of tax on “personal income”, “sales and use” and “corporation franchise”. Moreover, focusing on key industries and exemplary cases, there are also the norms of tax exemption and tax abatement in China for promoting the development of technology.[15]The benefit of tax is not only in research but also in “the process of research”.   To sum up, the government of Taiwan provides the benefit of tax for advancing the competition of outcomes in market, and for propelling the development of innovation. In order to accelerate the efficiency of scientific research, the government could draw lessons from America and China for enacting the norms about the benefit of tax and the constitution of guidance. [1] The Act §23. [2] Id. §24. [3] Id. §25. [4] Regulations Governing the Bonding Operations in Science Parks. [5] Such as Act for Development of Small and Medium Enterprises, Statute for Industrial Innovation, Act for the Development of Biotech and New Pharmaceuticals Industry. [6] Statute for Industrial Innovation §10. [7] Id. §10-1. [8] Id. §12-1. [9] Id. §12-2. [10] Id. §19-1. [11] Id. §23-1, §23-2, §23-3. [12] Act for the Development of Biotech and New Pharmaceuticals Industry §5, §6, §7. [13] Act for Development of Small and Medium Enterprises Chapter 4: §33 to §36-3. [14] New York State Department of Taxation and Finance Taxpayer Guidance Division, New York State Business Incubator and Innovation Hot Spot Support Act, Technical Memorandum TSB-M-14(1)C, (1)I, (2)S, at 1-6 (March 7, 2014), URL:http://www.wnyincubators.com/content/Innovation%20Hot%20Spot%20Technical%20Memorandum.pdf (last visited:December 18, 2019). [15] Enterprise Income Tax Law of the People’s Republic of China Chapter 4 “Preferential Tax Treatments”: §25 to §36 (2008 revised).

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (1) – For Example, The Finnish Innovation Fund (“SITRA”)

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (1) – For Example, The Finnish Innovation Fund (“SITRA”) I. Foreword   We hereby aim to analyze and research the role played by The Finnish Innovation Fund (“Sitra”) in boosting the national innovation ability and propose the characteristics of its organization and operation which may afford to facilitate the deliberation on Taiwan’s legal system. Sitra is an independent organization which is used to reporting to the Finnish Parliament directly, dedicated to funding activities to boost sustainable development as its ultimate goal and oriented toward the needs for social change. As of 2004, it promoted the fixed-term program. Until 2012, it, in turn, primarily engaged in 3-year program for ecological sustainable development and enhancement of society in 2012. The former aimed at the sustainable use of natural resources to develop new structures and business models and to boost the development of a bioeconomy and low-carbon society, while the latter aimed to create a more well-being-oriented public administrative environment to upgrade various public sectors’ leadership and decision-making ability to introduce nationals’ opinion to policies and the potential of building new business models and venture capital businesses[1]. II. Standing and Operating Instrument of Sitra 1. Sitra Standing in Boosting of Finnish Innovation Policies (1) Positive Impact from Support of Innovation R&D Activities by Public Sector   Utilization of public sector’s resources to facilitate and boost industrial innovation R&D ability is commonly applied in various countries in the world. Notwithstanding, the impact of the public sector’s investment of resources produced to the technical R&D and the entire society remains explorable[2]. Most studies still indicate positive impact, primarily as a result of the market failure. Some studies indicate that the impact of the public sector’s investment of resources may be observable at least from several points of view, including: 1. The direct output of the investment per se and the corresponding R&D investment potentially derived from investees; 2. R&D of outputs derived from the R&D investment, e.g., products, services and production methods, etc.; 3. direct impact derived from the R&D scope, e.g., development of a new business, or new business and service models, etc.; 4. impact to national and social economies, e.g., change of industrial structures and improvement of employment environment, etc. Most studies indicate that from the various points of view, the investment by public sector all produced positive impacts and, therefore, such investment is needed definitely[3]. The public sector may invest in R&D in diversified manners. Sitra invests in the “market” as an investor of corporate venture investment market, which plays a role different from the Finnish Funding Agency for Technology and Innovation (“Tekes”), which is more like a governmental subsidizer. Nevertheless, Finland’s characteristics reside in the combination of multiple funding and promotion models. Above all, due to the different behavior model, the role played by the former is also held different from those played by the general public sectors. This is why we choose the former as the subject to be studied herein. Data source: Jari Hyvärinen & Anna-Maija Rautiainen, Measuring additionality and systemic impacts of public research and development funding – the case of TEKES, FINLAND, RESEARCH EVALUATION, 16(3), 205, 206 (2007). Fig. 1 Phased Efforts of Resources Invested in R&D by Public Sector (2) Two Sided f Role Played by Sitra in Boosting of Finnish Innovation Policies   Sitra has a very special position in Finland’s national innovation policies, as it not only helps successful implementation of the innovation policies but also acts an intermediary among the relevant entities. Sitra was founded in 1967 under supervision of the Bank of Finland before 1991, but was transformed into an independent foundation under the direction of the Finnish Parliament[4].   Though Sitra is a public foundation, its operation will not be intervened or restricted by the government. Sitra may initiate any innovation activities for its new organization or system, playing a role dedicated to funding technical R&D or promoting venture capital business. Meanwhile, Sitra also assumes some special function dedicated to decision-makers’ training and organizing decision-maker network to boost structural change. Therefore, Sitra may be identified as a special organization which may act flexibly and possess resources at the same time and, therefore, may initiate various innovation activities rapidly[5].   Sitra is authorized to boost the development of innovation activities in said flexible and characteristic manner in accordance with the Finland Innovation Fund Act (Laki Suomen itsenäisyyden juhlarahastosta). According to the Act, Finland established Sitra in 1967 and Sitra was under supervision of Bank of Finland (Article 1). Sitra was established in order to boost the stable growth of Finland’s economy via the national instrument’s support of R&D and education or other development instruments (Article 2). The policies which Sitra may adopt include loaning or funding, guarantee, marketable securities, participation in cooperative programs, partnership or equity investment (Article 3). If necessary, Sitra may collect the title of real estate or corporate shares (Article 7). Data source: Finnish innovation system, Research.fi, http://www.research.fi/en/innovationsystem.html (last visited Mar. 15, 2013). Fig. 2 Finnish Scientific Research Organization Chart   Sitra's innovation role has been evolved through two changes. Specifically, Sitra was primarily dedicated to funding technical R&D among the public sectors in Finland, and the funding model applied by Sitra prior to the changes initiated the technical R&D promotion by Tekes, which was established in 1983. The first change of Sitra took place in 1987. After that, Sitra turned to focus on the business development and venture capital invested in technology business and led the venture capital investment. Meanwhile, it became a partner of private investment funds and thereby boosted the growth of venture capital investments in Finland in 1990. In 2000, the second change of Sitra took place and Sitra’s organization orientation was changed again. It achieved the new goal for structural change step by step by boosting the experimental social innovation activities. Sitra believed that it should play the role contributing to procedural change and reducing systematic obstacles, e.g., various organizational or institutional deadlocks[6].   Among the innovation policies boosted by the Finnish Government, the support of Start-Ups via governmental power has always been the most important one. Therefore, the Finnish Government is used to playing a positive role in the process of developing the venture capital investment market. In 1967, the Government established a venture capital company named Sponsor Oy with the support from Bank of Finland, and Sponsor Oy was privatized after 1983. Finland Government also established Kera Innovation Fund (now known as Finnvera[7]) in 1971, which was dedicated to boosting the booming of Start-Ups in Finland jointly with Finnish Industry Investment Ltd. (“FII”) established by the Government in 1994, and Sitra, so as to make the “innovation” become the main development force of the country[8] .   Sitra plays a very important role in the foundation and development of venture capital market in Finland and is critical to the Finnish Venture Capital Association established in 1990. After Bank of Finland was under supervision of Finnish Parliament in 1991, Sitra became on the most important venture capital investors. Now, a large portion of private venture capital funds are provided by Sitra[9]. Since Sitra launched the new strategic program in 2004, it has turned to apply smaller sized strategic programs when investing young innovation companies, some of which involved venture capital investment. The mapping of young innovation entrepreneurs and angel investors started as of 1996[10].   In addition to being an important innovation R&D promoter in Finland, Sitra is also an excellent organization which is financially self-sufficient and tends to gain profit no less than that to be generated by a private enterprise. As an organization subordinated to the Finnish Parliament immediately, all of Sitra’s decisions are directly reported to the Parliament (public opinion). Chairman of Board, Board of Directors and supervisors of Sitra are all appointed by the Parliament directly[11]. Its working funds are generated from interest accruing from the Fund and investment income from the Fund, not tax revenue or budget prepared by the Government any longer. The total fund initially founded by Bank of Finland amounted to DEM100,000,000 (approximately EUR17,000,000), and was accumulated to DEM500,000,000 (approximately EUR84,000,000) from 1972 to 1992. After that, following the increase in market value, its nominal capital amounted to DEM1,400,000,000 (approximately EUR235,000,000) from 1993 to 2001. Obviously, Sitra generated high investment income. Until 2010, it has generated the investment income amounting to EUR697,000,000 .   In fact, Sitra’s concern about venture capital investment is identified as one of the important changes in Finland's national technical R&D polices after 1990[13]. Sitra is used to funding businesses in three manners, i.e., direct investment in domestic stock, investment in Finnish venture capital funds, and investment in international venture capital funds, primarily in four industries, technology, life science, regional cooperation and small-sized & medium-sized starts-up. Meanwhile, it also invests in venture capital funds for high-tech industries actively. In addition to innovation technology companies, technical service providers are also its invested subjects[14]. 2. “Investment” Instrument Applied by Sitra to Boost Innovation Business   The Starts-Up funding activity conducted by Sitra is named PreSeed Program, including INTRO investors’ mapping platform dedicated to mapping 450 angel investment funds and entrepreneurs, LIKSA engaged in working with Tekes to funding new companies no more than EUR40,000 for purchase of consultation services (a half thereof funded by Tekes, and the other half funded by Sitra in the form of loan convertible to shares), DIILI service[15] dedicated to providing entrepreneurs with professional sale consultation resources to integrate the innovation activity (product thereof) and the market to remedy the deficit in the new company’s ability to sell[16].   The investment subjects are stated as following. Sitra has three investment subjects, namely, corporate investments, fund investments and project funding. (1) Corporate investment   Sitra will not “fund” enterprises directly or provide the enterprises with services without consideration (small-sized and medium-sized enterprises are aided by other competent authorities), but invest in the businesses which are held able to develop positive effects to the society, e.g., health promotion, social problem solutions, utilization of energy and effective utilization of natural resources. Notwithstanding, in order to seek fair rate of return, Sitra is dedicated to making the investment (in various enterprises) by its professional management and technology, products or competitiveness of services, and ranging from EUR300,000 to EUR1,000,000 to acquire 10-30% of the ownership of the enterprises, namely equity investment or convertible funding. Sitra requires its investees to value corporate social responsibility and actively participate in social activities. It usually holds the shares from 4 years to 10 years, during which period it will participate the corporate operation actively (e.g., appointment of directors)[17]. (2) Fund investments   For fund investments[18], Sitra invests in more than 50 venture capital funds[19]. It invests in domestic venture capital fund market to promote the development of the market and help starts-up seek funding and create new business models, such as public-private partnerships. It invests in international venture capital funds to enhance the networking and solicit international funding, which may help Finnish enterprises access international trend information and adapt to the international market. (3) Project funding   For project funding, Sitra provides the on-site information survey (supply of information and view critical to the program), analysis of business activities (analysis of future challenges and opportunities) and research & drafting of strategies (collection and integration of professional information and talents to help decision making), and commissioning of the program (to test new operating model by commissioning to deal with the challenge from social changes). Notwithstanding, please note that Sitra does not invest in academic study programs, research papers or business R&D programs[20]. (4) DIILI Investment Model Integrated With Investment Absorption   A Start-Up usually will not lack technologies (usually, it starts business by virtue of some advanced technology) or foresighted philosophy when it is founded initially, while it often lacks the key to success, the marketing ability. Sitra DIILI is dedicated to providing the professional international marketing service to help starts-up gain profit successfully. Owing to the fact that starts-up are usually founded by R&D personnel or research-oriented technicians, who are not specialized in marketing and usually retains no sufficient fund to employ marketing professionals, DILLI is engaged in providing dedicated marketing talents. Now, it employs about 85 marketing professionals and seeks to become a start-up partner by investing technical services.   Notwithstanding, in light of the characteristics of Sitra’s operation and profitability, some people indicate that it is more similar to a developer of an innovation system, rather than a neutral operator. Therefore, it is not unlikely to hinder some work development which might be less profitable (e.g., establishment of platform). Further, Sitra is used to developing some new investment projects or areas and then founding spin-off companies after developing the projects successfully. The way in which it operates seems to be non-compatible with the development of some industries which require permanent support from the public sector. The other issues, such as INTRO lacking transparency and Sitra's control over investment objectives likely to result in adverse choice, all arise from Sitra’s consideration to its own investment opportunities and profit at the same time of mapping. Therefore, some people consider that it should be necessary to move forward toward a more transparent structure or a non-income-oriented funding structure[21] . Given this, the influence of Sitra’s own income over upgrading of the national innovation ability when Sitra boosts starts-up to engage in innovation activities is always a concern remaining disputable in the Finnish innovation system. 3. Boosting of Balance in Regional Development and R&D Activities   In order to fulfill the objectives under Lisbon Treaty and to enable EU to become the most competitive region in the world, European Commission claims technical R&D as one of its main policies. Among other things, under the circumstance that the entire R&D competitiveness upgrading policy is always progressing sluggishly, Finland, a country with a population of 5,300,000, accounting for 1.1% of the population of 27 EU member states, was identified as the country with the No. 1 innovation R&D ability in the world by World Economic Forum in 2005. Therefore, the way in which it promotes innovation R&D policies catches the public eyes. Some studies also found that the close relationship between R&D and regional development policies of Finland resulted in the integration of regional policies and innovation policies, which were separated from each other initially, after 1990[22]. Finland has clearly defined the plan to exploit the domestic natural resources and human resources in a balanced and effective manner after World War II. At the very beginning, it expanded the balance of human resources to low-developed regions, in consideration of the geographical politics, but in turn, it achieved national balanced development by meeting the needs for a welfare society and mitigation of the rural-urban divide as time went by. The Finnish innovation policies which may resort to technical policies retroactively initially drove the R&D in the manners including upgrading of education degree, founding of Science and Technology Policy Council and Sitra, establishment of Academy of Finland (1970) and establishment of the technical policy scheme, et al.. Among other things, people saw the role played by Sitra in Finland’s knowledge-intensive society policy again. From 1991 to 1995, the Finnish Government officially included the regional competitiveness into the important policies. The National Industrial Policy for Finland in 1993 adopted the strategy focusing on the development based on competitive strength in the regional industrial communities[23].   Also, some studies indicated that in consideration of Finland’s poor financial and natural resources, its national innovation system should concentrate the resources on the R&D objectives which meet the requirements about scale and essence. Therefore, the “Social Innovation, Social and Economic Energy Re-building Learning Society” program boosted by Sitra as the primary promoter in 2002 defined the social innovation as “the reform and action plan to enhance the regulations of social functions (law and administration), politics and organizational structure”, namely reform of the mentality and cultural ability via social structural changes that results in social economic changes ultimately. Notwithstanding, the productivity innovation activity still relies on the interaction between the enterprises and society. Irrelevant with the Finnish Government’s powerful direction in technical R&D activities, in fact, more than two-thirds (69.1%) of the R&D investment was launched by private enterprises and even one-thirds launched by a single enterprise (i.e., Nokia) in Finland. At the very beginning of 2000, due to the impact of globalization to Finland’s innovation and regional policies, a lot of R&D activities were emigrated to the territories outside Finland[24]. Multiple disadvantageous factors initiated the launch of national resources to R&D again. The most successful example about the integration of regional and innovation policies in Finland is the Centres of Expertise Programme (CEP) boosted by it as of 1990. Until 1994, there have been 22 centres of expertise distributed throughout Finland. The centres were dedicated to integrating local universities, research institutions and enterprise for co-growth. The program to be implemented from 2007 to 2013 planned 21 centres of expertise (13 groups), aiming to promote the corporate sectors’ cooperation and innovation activities. CEP integrated local, regional and national resources and then focused on the businesses designated to be developed[25]. [1] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [2] Jari Hyvärinen & Anna-Maija Rautiainen, Measuring additionality and systemic impacts of public research and development funding – the case of TEKES, FINLAND, RESEARCH EVALUATION, 16(3), 205, 208 (2007). [3] id. at 206-214. [4] Charles Edquist, Tterttu Luukkonen & Markku Sotarauta, Broad-Based Innovation Policy, in EVALUATION OF THE FINNISH NATIONAL INNOVATION SYSTEM – FULL REPORT 11, 25 (Reinhilde Veugelers st al. eds., 2009). [5] id. [6] id. [7] Finnvera is a company specialized in funding Start-Ups, and its business lines include loaning, guarantee, venture capital investment and export credit guarantee, etc. It is a state-run enterprise and Export Credit Agency (ECA) in Finland. Finnvera, http://annualreport2012.finnvera.fi/en/about-finnvera/finnvera-in-brief/ (last visited Mar. 10, 2013). [8] Markku Maula, Gordon Murray & Mikko Jääskeläinen, MINISTRY OF TRADE AND INDUSTRY, Public Financing of Young Innovation Companies in Finland 32 (2006). [9] id. at 33. [10] id. at 41. [11] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [12] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [13] The other two were engaged in boosting the regional R&D center and industrial-academy cooperative center programs. Please see Gabriela von Blankenfeld-Enkvist, Malin Brännback, Riitta Söderlund & Marin Petrov, ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT [OECD],OECD Case Study on Innovation: The Finnish Biotechnology Innovation System 15 (2004). [14] id. at20. [15] DIILI service provides sales expertise for SMEs, Sitra, http://www.sitra.fi/en/articles/2005/diili-service-provides-sales-expertise-smes-0 (last visited Mar. 10, 2013). [16] Maula, Murray & Jääskeläinen, supra note 8 at 41-42. [17] Corporate investments, Sitra, http://www.sitra.fi/en/corporate-investments (last visited Mar. 10, 2013). [18] Fund investments, Sitra, http://www.sitra.fi/en/fund-investments (last visited Mar. 10, 2013). [19] The venture capital funds referred to herein mean the pooled investment made by the owners of venture capital, while whether it exists in the form of fund or others is not discussed herein. [20] Project funding, Sitra, http://www.sitra.fi/en/project-funding (last visited Mar. 10, 2013). [21] Maula, Murray & Jääskeläinen, supra note 8 at 42. [22] Jussi S. Jauhiainen, Regional and Innovation Policies in Finland – Towards Convergence and/or Mismatch? REGIONAL STUDIES, 42(7), 1031, 1032-1033 (2008). [23] id. at 1036. [24] id. at 1038. [25] id. at 1038-1039.

The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health

The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health Li-Ting Tsai   Scientific research improves the well-being of all mankind, the data sharing on medical and health promote the overall amount of energy in research field. For promoting the access of scientific data and research findings which was supported by the government, the U.S. government affirmed in principle that the development of science was related to the retention and accesses of data. The disclosure of information should comply with legal restrictions, and the limitation by time as well. For government-sponsored research, the data produced was based on the principle of free access, and government policies should also consider the actual situation of international cooperation[1]Furthermore, the access of scientific research data would help to promote scientific development, therefore while formulating a sharing policy, the government should also consider the situation of international cooperation, and discuss the strategy of data disclosure based on the principle of free access.   In order to increase the effectiveness of scientific data, the U.S. National Institutes of Health (NIH) set up the Office of Science Policy (OSP) to formulate a policy which included a wide range of issues, such as biosafety (biosecurity), genetic testing, genomic data sharing, human subjects protections, the organization and management of the NIH, and the outputs and value of NIH-funded research. Through extensive analysis and reports, proposed emerging policy recommendations.[2] At the level of scientific data sharing, NIH focused on "genes and health" and "scientific data management". The progress of biomedical research depended on the access of scientific data; sharing scientific data was helpful to verify research results. Researchers integrated data to strengthen analysis, promoted the reuse of difficult-generated data, and accelerated research progress.[3] NIH promoted the use of scientific data through data management to verify and share research results.   For assisting data sharing, NIH had issued a data management and sharing policy (DMS Policy), which aimed to promote the sharing of scientific data funded or conducted by NIH.[4] DMS Policy defines “scientific data.” as “The recorded factual material commonly accepted in the scientific community as of sufficient quality to validate and replicate research findings, regardless of whether the data are used to support scholarly publications. Scientific data do not include laboratory notebooks, preliminary analyses, completed case report forms, drafts of scientific papers, plans for future research, peer reviews, communications with colleagues, or physical objects, such as laboratory specimens.”[5] In other words, for determining scientific data, it is not only based on whether the data can support academic publications, but also based on whether the scientific data is a record of facts and whether the research results can be repeatedly verified.   In addition, NIH, NIH research institutes, centers, and offices have had expected sharing of data, such as: scientific data sharing, related standards, database selection, time limitation, applicable and presented in the plan; if not applicable, the researcher should propose the data sharing and management methods in the plan. NIH also recommended that the management and sharing of data should implement the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The types of data to be shared should first in general descriptions and estimates, the second was to list meta-data and other documents that would help to explain scientific data. NIH encouraged the sharing of scientific data as soon as possible, no later than the publication or implementation period.[6] It was said that even each research project was not suitable for the existing sharing strategy, when planning a proposal, the research team should still develop a suitable method for sharing and management, and follow the FAIR principles.   The scientific research data which was provided by the research team would be stored in a database which was designated by the policy or funder. NIH proposed a list of recommended databases lists[7], and described the characteristics of ideal storage databases as “have unique and persistent identifiers, a long-term and sustainable data management plan, set up metadata, organizing data and quality assurance, free and easy access, broad and measured reuse, clear use guidance, security and integrity, confidentiality, common format, provenance and data retention policy”[8]. That is to say, the design of the database should be easy to search scientific data, and should maintain the security, integrity and confidentiality and so on of the data while accessing them.   In the practical application of NIH shared data, in order to share genetic research data, NIH proposed a Genomic Data Sharing (GDS) Policy in 2014, including NIH funding guidelines and contracts; NIH’s GDS policy applied to all NIHs Funded research, the generated large-scale human or non-human genetic data would be used in subsequent research. [9] This can effectively promote genetic research forward.   The GDS policy obliged researchers to provide genomic data; researchers who access genomic data should also abide by the terms that they used the Controlled-Access Data for research.[10] After NIH approved, researchers could use the NIH Controlled-Access Data for secondary research.[11] Reviewed by NIH Data Access Committee, while researchers accessed data must follow the terms which was using Controlled-Access Data for research reason.[12] The Genomic Summary Results (GSR) was belong to NIH policy,[13] and according to the purpose of GDS policy, GSR was defined as summary statistics which was provided by researchers, and non-sensitive data was included to the database that was designated by NIH.[14] Namely. NIH used the application and approval of control access data to strike a balance between the data of limitation access and scientific development.   For responding the COVID-19 and accelerating the development of treatments and vaccines, NIH's data sharing and management policy alleviated the global scientific community’s need for opening and sharing scientific data. This policy established data sharing as a basic component in the research process.[15] In conclusion, internalizing data sharing in the research process will help to update the research process globally and face the scientific challenges of all mankind together. [1]NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, organized from Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]The list of databases in details please see:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

Introducing and analyzing the Scope and Benefits of the Regulation「Statute for Upgrading Industries」in The Biotechnology Industry in Taiwan

The recent important regulation for supporting the biopharmaceutical industry in Taiwan has been the 「Statute for Upgrading Industries」 (hereinafter referred to as 「the Statute」).The main purpose of the Statue is for upgrading all industry for future economic development, so it applies to various industries, ranging from agriculture, industrial and service businesses. In other words, the Statute does not offer incentive measures to biopharmaceutical industry in particular, but focuses on promoting the industry development in general. Statute for Upgrading Industry and Related Regulations Generally speaking, the Statute has a widespread influence on industry development in Taiwan. The incentive measures provided in the Statute is complicated and covered other related regulations under its legal framework. Thus, the article will be taking a multi-facet perspective in discussing the how Statute relates to the biopharmaceutical industry. 1 、 Scope of Application According to Article 1 of the Statute, the term 「industries」 refers to agricultural, industrial and service businesses. Consequently, nearly all kinds of industries fall under this definition, and the Statute is applicable to all of them. Moreover, in order to promote the development and application of emerging technology as well as cultivating the recognized industry, the Statute provides much more favorable terms to these industries. These emerging and major strategic industries includes computer, communication and consumer electronics (3C), precise mechanics and automation, aerospace, biomedical and chemical production, green technology, material science, nanotechnology, security and other product or service recognized by the Executive Yuan. 2 、 Tax Benefits The Statute offers several types of tax benefits, so the industry could receive sufficient reward in every way it could, and promote a sound cycle in creating new values through these benefits. (1) Benefits for the purchase of automation equipment The said procured equipment and technology over NTD600, 000 may credit a certain percentage of the investment against the amount of profit-seeking enterprise income tax payable for the then current year. For the purchase of production technology, 5% may be credited. For the purchase of equipment, 7% may be credited. And any investment plan that includes the purchasing of equipment for automation can qualify for a low-interest preferential loan. Besides, for science-based industrial company imported overseas equipment that is not manufacture by local manufactures, from January 1, 2002, the imported equipment shall be exempted from import and business tax. And if the company is a bonded factory, the raw materials to be imported from abroad by it shall also be exempt from import duties and business tax. (2) Benefits for R&D expenditure Expenditure concurred for developing new products, improving production technology, or improving label-providing technology may credit 30%of the investment against the amount of profit-seeking enterprise income tax payable for the then current year. Research expenditures of the current year exceeding the average research expenditure for the past two years, the excess in research expenditure shall be 50% deductible. Instruments and equipments purchased by for exclusive R&D purpose, experimentation, or quality inspection may be accelerated to two years. At last, Biotech and New Pharmaceuticals Company engages in R&D activities, such as Contract research Organization (CRO), may credit 30% of the investment against the amount of profit-seeking enterprise income tax payable. (3) Personnel Training When a company trained staff and registered for business-related course, may credit 30% of the training cost against the amount of profit-seeking enterprise income tax payable for the then current year. Where training expenses for the current year exceeds the two-year average, 50% of the excess portion may be credited. (4) Benefit for Newly Emerging Strategic Industries Corporate shareholders invest in newly emerging strategic industries are entitled to select one of the following tax benefits: A profit seeking enterprise may credit up to 20% of the price paid for acquisition of such stock against the profit seeking enterprise income tax. An individual may credit up to 10%. As of January and once every year, there will be a 1% reduction of the price paid for acquisition of such stock against the consolidated income tax payable in the then current year. A company, within two years from the beginning date for payment of the stock price by its shareholders, selects, with the approval of its shareholder meeting, the application of an exemption from profit-seeking enterprise income tax and waives the shareholders investment credit against payable income tax as mentioned above. However, that once the selection is made, no changes shall be allowed. (5) Benefits for Investment in Equipment or Technology Used for Pollution Control To prevent our environment from further pollution, the Government offers tax benefits to reward companies in making improvements. Investment in equipment or technology used for pollution control may credit 7% of the equipment expenditure, and 5% of the expenditure on technology against the amount of profit-seeking enterprise income tax payable for the then current year. For any equipment that has been verified in use and specialized in air pollution control, noise pollution control, vibration control, water pollution control, environmental surveillance and waste disposal, shall be exempt from import duties and business tax. And for investment plans that planned implementation of energy saving systems can apply for a low interest loan. (6) Incentive for Operation Headquarter To encourage companies to utilize worldwide resources and set up international operation network, if they established operation headquarters within the territory of the Republic of China reaching a specific size and bringing about significant economic benefit, their following incomes shall be exempted from profit-seeking enterprise income tax: The income derived from provision of management services or R&D services. The royalty payment received under its investments to its affiliates abroad. The investment return and asset disposal received under its investment to its affiliates abroad. (7) Exchange of Technology for Stock Option The emerging-industrycompany recognized by government, upon adoption of a resolution by a majority voting of the directors present at a meeting of its board of directors attended by two-thirds of the directors of the company, may issue stock options to corporation or individual in exchange for authorization or transfer of patent and technologies. (8) Deferral of Taxes on the Exchange of Technology for Shares Taxes on income earned by investors from the acquisition of shares in emerging-industry companies in exchange for technology will be deferred for five years, on condition that the shares exchanged for technology amount to more than 20% of the company's total stock equity and that the number of persons who obtain shares in exchange for technology does not exceed five. 3 、 Technical Assistance and Capital Investment The rapid industry development has been closely tied to the infusion of funds. In addition to tax benefits, the Statute incorporates regulations especially for technical assistance and capital investment as below: (1) In order to introduce or transfer advanced technologies, technical organization formed with the contribution of government shall provide appropriate technical assistance as required. (2) In order to advance technologies, enhance R&D activities and further upgrade industries, the relevant central government authorities in charge of end enterprises may promote the implementation of industrial and technological projects by providing subsidies to such R&D projects. (3) In order to assist the start-up of domestic small-medium technological enterprises and the overall upgrading of the entire industries, guidance and assistance shall be provided for the development of venture capital enterprises.

TOP