The Taiwan Government has planned to boost the support and develop local industries across the following six major sectors: biotechnology, tourism, health care, green energy, innovative culture and post-modern agriculture. As the biotechnology industry has reached its maturity by the promulgation of "Biotech and New Pharmaceutical Development Act" in July, 2007, it will be the first to take the lead among the above sectors. Thus, the Executive Yuan has launched the Biotechnology Action Plan as the first project in building the leading industry sectors, to upgrade local industries and stimulate future economic growth.
To expand every industrial scale, enhance industrial value, increase the value around the main industrial field, and to encourage the industrial development by government investments for creating the civil working opportunities to reach the goal of continuous economic development, the Executive Yuan Economic Establishment commission has expressed that, the government has selected six newly industrials including "Biotechnology", "Green Energy", "Refined Agriculture", "Tourism", "Medicare", and "Culture Originality" on November 19, 2009 to promote our national economic growth. The government will invest two hundred billion NT dollars to support the industrial development aggressively and to enhance the social investments from year 2009 to 2012. According to a Chung-Hua Institution for Economic Research report, the future growth rate will reach 8.16% after the evaluation, Hence, the future of the industries seems to be quite bright.
Currently, the government plans to put money into six newly industries through the existing ways for investment. For instance, firstly, in accordance with the "Act For The Development Of Biotech And New Pharmaceuticals Industry" article 5 provision 1 ",for the purpose of promoting the Biotech and New Pharmaceuticals Industry, a Biotech and New Pharmaceuticals Company may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to thirty-five percent (35%) of the total funds invested in research and development ("R&D") and personnel training each year; provided, however, that if the R&D expenditure of a particular year exceeds the average R&D expenditure of the previous two years or if the personnel training expenditure of a particular year exceeds the average personnel training expenditure of the previous two years, fifty percent (50%) of the amount in excess of the average may be used to credit against the amount of corporate income tax payable. Secondly, according to same act of the article 6 provision 1 ", in order to encourage the establishment or expansion of Bio tech and New Pharmaceuticals Companies, a profit-seeking enterprise that (i) subscribes for the stock issued by a Biotech and New Pharmaceuticals Company at the time of the latter's establishment or subsequent expansion; and (ii) has been a registered shareholder of the Biotech and New Pharmaceuticals Company for a period of three (3) years or more, may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to twenty percent (20%) of the total amount of price paid for the subscription of shares in such Biotech and New Pharmaceuticals Company; provided that such Biotech and New Pharmaceuticals Company has not applied for exemption from corporate income tax or shareholders investment credit based on the subscription price under other applicable laws and regulations. Thirdly, to promote the entire biotechnological industry development, the government has drafted the "Biotechnology Takeoff Package" for subsidizing the startup´s social investment companies which can satisfy the conditions to invest in "Drug discovery", "Medical Device" or other related biotech industries up to 5 billion with the capital invest in domestic industry over 50%, , with operating experience of multinational biotech investment companies with capital over 150 million in related industrial fields, and with the working experiences of doctor accumulated up to 60 years.
Additionally, the refined agriculture industry field has not only discovered the gene selected products, but also combined the tourism with farming business for new business model creation. According to the "Guidelines for Preferential Loans for the Upgrading of Tourism Enterprises" point 4 provision 1, the expenditure for spending on machine, instruments, land or repairing can be granted a preferential loan in accordance with the rule of point 6, and government will provide a subsidy of interest for loaning Tourism Enterprises with timely payments.
At last, Council for Economic Planning and Development also points out because most of technology industry has been impacted seriously by fluctuation of international prosperity due to conducting the export trade oriented strategy. Furthermore, the aspects of our export trade of technology industry have been impacted by the U.S. financial crisis and the economic decay in EU and US; and the industrial development seems to face the problem caused by over centralization in Taiwan. Hence, the current framework of domestic industry should be rearranged and to make it better by promoting the developmental project of six newly industries.
In July 2007, the "Biotech and New Pharmaceutical Development Act" modified many regulations related to pharmaceutical administration, taxes, and professionals in Taiwan. In addition, in order to facilitate the development of the biotechnology and pharmaceutical industries, the government has attempted to create a friendly environment for research and development by setting up appropriate regulations and application systems. These measures show that the Taiwanese government is keenly aware that these industries have huge potential value. To operate in coordination with the above Act and to better deal with the increasing productivity of pharmaceutical R&D programs in Taiwan, the Executive Yuan simplified the New Drug Application (NDA) process to facilitate the submission that required Certificate of Pharmaceutical Product (CPP) for drugs with new ingredients.
The current NDA process requires sponsors to submit documentation as specified by one of the following four options: (1) three CPPs from three of "ten medically-advanced countries," including Germany, the U.S., England, France, Japan, Switzerland, Canada, Australia, Belgium, and Sweden; (2) one CPP from the U.S., Japan, Canada, Australia, or England and one CPP from Germany, France, Switzerland, Sweden, or Belgium; (3) a Free Sale Certificate (FSC) from one of ten medically-advanced countries where the pharmaceuticals are originally produced and one CPP from one of the other nine countries; or (4) a CPP from the European Medicines Agency. Thus, the current NDA process requires sponsors to spend inordinate amounts of time and incur significant costs to acquire two or three FSCs or CPPs from ten medically-advanced countries in order to submit an NDA in Taiwan.
According to the new rules, sponsors will not have to submit above CPPs if (1) Phase I clinical studies have been conducted in Taiwan, and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country or (2) Phase II and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country. Besides, the required minimum numbers of patients were evaluated during each above phase. Therefore, sponsors who conduct clinical studies in Taiwan and in another country simultaneously could reduce their costs and shorten the NDA process in Taiwan.
The new rules aim to encourage international pharmaceutical companies to conduct clinical studies in Taiwan or to conduct such studies cooperatively with Taiwanese pharmaceutical companies. Such interactions will allow Taiwanese pharmaceutical companies to participate in development and implementation of international clinical studies in addition to benefiting from the shortened NDA process. Therefore, the R&D abilities and the internationalization of the Taiwanese pharmaceutical industry will be improved.
The Research on ownership of cell therapy products 1. Issues concerning ownership of cell therapy products Regarding the issue of ownership interests, American Medical Association(AMA)has pointed out in 2016 that using human tissues to develop commercially available products raises question about who holds property rights in human biological materials[1]. In United States, there have been several disputes concern the issue of the whether the donor of the cell therapy can claim ownership of the product, including Moore v. Regents of University of California(1990)[2], Greenberg v. Miami Children's Hospital Research Institute(2003)[3], and Washington University v. Catalona(2007)[4]. The courts tend to hold that since cells and tissues were donated voluntarily, the donors had already lost their property rights of their cells and tissues at the time of the donation. In Moore case, even if the researchers used Moore’s cells to obtain commercial benefits in an involuntary situation, the court still held that the property rights of removed cells were not suitable to be claimed by their donor, so as to avoid the burden for researcher to clarify whether the use of cells violates the wishes of the donors and therefore decrease the legal risk for R&D activities. United Kingdom Medical Research Council(MRC)also noted in 2019 that the donated human material is usually described as ‘gifts’, and donors of samples are not usually regarded as having ownership or property rights in these[5]. Accordingly, both USA and UK tends to believe that it is not suitable for cell donors to claim ownership. 2. The ownership of cell therapy products in the lens of Taiwan’s Civil Code In Taiwan, Article 766 of Civil Code stipulated: “Unless otherwise provided by the Act, the component parts of a thing and the natural profits thereof, belong, even after their separation from the thing, to the owner of the thing.” Accordingly, many scholars believe that the ownership of separated body parts of the human body belong to the person whom the parts were separated from. Therefore, it should be considered that the ownership of the cells obtained from the donor still belongs to the donor. In addition, since it is stipulated in Article 406 of Civil Code that “A gift is a contract whereby the parties agree that one of the parties delivers his property gratuitously to another party and the latter agrees to accept it.”, if the act of donation can be considered as a gift relationship, then the ownership of the cells has been delivered from donor to other party who accept it accordingly. However, in the different versions of Regenerative Medicine Biologics Regulation (draft) proposed by Taiwan legislators, some of which replace the term “donor” with “provider”. Therefore, for cell providers, instead of cell donors, after providing cells, whether they can claim ownership of cell therapy product still needs further discussion. According to Article 69 of the Civil Code, it is stipulated that “Natural profits are products of the earth, animals, and other products which are produced from another thing without diminution of its substance.” In addition, Article 766 of the Civil Code stipulated that “Unless otherwise provided by the Act, the component parts of a thing and the natural profits thereof, belong, even after their separation from the thing, to the owner of the thing.” Thus, many scholars believe that when the product is organic, original substance and the natural profits thereof are all belong to the owner of the original substance. For example, when proteins are produced from isolated cells, the proteins can be deemed as natural profits and the ownership of proteins and isolated cells all belong to the owner of the cells[6]. Nevertheless, according to Article 814 of the Civil Code, it is stipulated that “When a person has contributed work to a personal property belonging to another, the ownership of the personal property upon which the work is done belongs to the owner of the material thereof. However, if the value of the contributing work obviously exceeds the value of the material, the ownership of the personal property upon which the work is done belongs to the contributing person.” Thus, scholar believes that since regenerative medical technology, which induces cell differentiation, involves quite complex biotechnology technology, and should be deemed as contributing work. Therefore, the ownership of cell products after contributing work should belongs to the contributing person[7]. Thus, if the provider provides the cells to the researcher, after complex biotechnology contributing work, the original ownership of the cells should be deemed to have been eliminated, and there is no basis for providers to claim ownership. However, since the development of cell therapy products involves a series of R&D activities, it still need to be clarified that who is entitled to the ownership of the final cell therapy products. According to Taiwan’s Civil Code, the ownership of product after contributing work should belongs to the contributing person. However, when there are numerous contributing persons, which person should the ownership belong to, might be determined on a case-by-case basis. 3. Conclusion The biggest difference between cell therapy products and all other small molecule drugs or biologics is that original cell materials are provided by donors or providers, and the whole development process involves numerous contributing persons. Hence, ownership disputes are prone to arise. In addition to the above-discussed disputes, United Kingdom Co-ordinating Committee on Cancer Research(UKCCCR)also noted that there is a long list of people and organizations who might lay claim to the ownership of specimens and their derivatives, including the donor and relatives, the surgeon and pathologist, the hospital authority where the sample was taken, the scientists engaged in the research, the institution where the research work was carried out, the funding organization supporting the research and any collaborating commercial company. Thus, the ultimate control of subsequent ownership and patent rights will need to be negotiated[8]. Since the same issues might also occur in Taiwan, while developing cell therapy products, carefully clarifying the ownership between stakeholders is necessary for avoiding possible dispute. [1]American Medical Association [AMA], Commercial Use of Human Biological Materials, Code of Medical Ethics Opinion 7.3.9, Nov. 14, 2016, https://www.ama-assn.org/delivering-care/ethics/commercial-use-human-biological-materials (last visited Jan. 3, 2021). [2]Moore v. Regents of University of California, 793 P.2d 479 (Cal. 1990) [3]Greenberg v. Miami Children's Hospital Research Institute, 264 F. Suppl. 2d, 1064 (SD Fl. 2003) [4]Washington University v. Catalona, 490 F 3d 667 (8th Cir. 2007) [5]Medical Research Council [MRC], Human Tissue and Biological Samples for Use in Research: Operational and Ethical Guidelines, 2019, https://mrc.ukri.org/publications/browse/human-tissue-and-biological-samples-for-use-in-research/ (last visited Jan. 3, 2021). [6]Wen-Hui Chiu, The legal entitlement of human body, tissue and derivatives in civil law, Angle Publishing, 2016, at 327. [7]id, at 341. [8]Okano, M., Takebayashi, S., Okumura, K., Li, E., Gaudray, P., Carle, G. F., & Bliek, J. UKCCCR guidelines for the use of cell lines in cancer research.Cytogenetic and Genome Research,86(3-4), 1999, https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2363383&blobtype=pdf (last visited Jan. 3, 2021).
Finland’s Technology Innovation SystemI. Introduction When, Finland, this country comes to our minds, it is quite easy for us to associate with the prestigious cell-phone company “NOKIA”, and its unbeatable high technology communication industry. However, following the change of entire cell-phone industry, the rise of smart phone not only has an influence upon people’s communication and interaction, but also makes Finland, once monopolized the whole cell-phone industry, feel the threat and challenge coming from other new competitors in the smart phone industry. However, even though Finland’s cell-phone industry has encountered frustrations in recent years in global markets, the Finland government still poured many funds into the area of technology and innovation, and brought up the birth of “Angry Birds”, one of the most popular smart phone games in the world. The Finland government still keeps the tradition to encourage R&D, and wishes Finland’s industries could re-gain new energy and power on technology innovation, and indirectly reach another new competitive level. According to the Statistics Finland, 46% Finland’s enterprises took innovative actions upon product manufacturing and the process of R&D during 2008-2010; also, the promotion of those actions not merely existed in enterprises, but directly continued to the aspect of marketing and manufacturing. No matter on product manufacturing, the process of R&D, the pattern of organization or product marketing, we can observe that enterprises or organizations make contributions upon innovative activities in different levels or procedures. In the assignment of Finland’s R&D budgets in 2012, which amounted to 200 million Euros, universities were assigned by 58 million Euros and occupied 29% R&D budgets. The Finland Tekes was assigned by 55 million Euros, and roughly occupied 27.5% R&D budgets. The Academy of Finland (AOF) was assigned by 32 million Euros, and occupied 16% R&D budges. The government’s sectors were assigned by 3 million Euros, and occupied 15.2% R&D budgets. Other technology R&D expenses were 2.1 million Euros, and roughly occupied 10.5% R&D. The affiliated teaching hospitals in universities were assigned by 0.36 million Euros, and occupied 1.8% R&D budgets. In this way, observing the information above, concerning the promotion of technology, the Finland government not only puts more focus upon R&D innovation, but also pays much attention on education quality of universities, and subsidizes various R&D activities. As to the Finland government’s assignment of budges, it can be referred to the chart below. As a result of the fact that Finland promotes industries’ innovative activities, it not only made Finland win the first position in “Growth Competitiveness Index” published by the World Economic Forum (WEF) during 2000-2006, but also located the fourth position in 142 national economy in “The Global Competitiveness Report” published by WEF, preceded only by Swiss, Singapore and Sweden, even though facing unstable global economic situations and the European debt crisis. Hence, observing the reasons why Finland’s industries have so strong innovative power, it seems to be related to the Finland’s national technology administrative system, and is worthy to be researched. II. The Recent Situation of Finland’s Technology Administrative System A. Preface Finland’s administrative system is semi-presidentialism, and its executive power is shared by the president and the Prime Minister; as to its legislative power, is shared by the Congress and the president. The president is the Finland’s leader, and he/she is elected by the Electoral College, and the Prime Minister is elected by the Congress members, and then appointed by the president. To sum up, comparing to the power owned by the Prime Minister and the president in the Finland’s administrative system, the Prime Minister has more power upon executive power. So, actually, Finland can be said that it is a semi-predisnetialism country, but trends to a cabinet system. Finland technology administrative system can be divided into four parts, and the main agency in each part, based upon its authority, coordinates and cooperates with making, subsidizing, executing of Finland’s technology policies. The first part is the policy-making, and it is composed of the Congress, the Cabinet and the Research and Innovation Council; the second part is policy management and supervision, and it is leaded by the Ministry of Education and Culture, the Ministry of Employment and the Economy, and other Ministries; the third part is science program management and subsidy, and it is composed of the Academy of Finland (AOF), the National Technology Agency (Tekes), and the Finnish National Fund Research and Development (SITRA); the fourth part is policy-executing, and it is composed of universities, polytechnics, public-owned research institutions, private enterprises, and private research institutions. Concerning the framework of Finland’s technology administrative, it can be referred to below. B. The Agency of Finland’s Technology Policy Making and Management (A) The Agency of Finland’s Technology Policy Making Finland’s technology policies are mainly made by the cabinet, and it means that the cabinet has responsibilities for the master plan, coordinated operation and fund-assignment of national technology policies. The cabinet has two councils, and those are the Economic Council and the Research and Innovation Council, and both of them are chaired by the Prime Minister. The Research and Innovation Council is reshuffled by the Science and Technology Policy Council (STPC) in 1978, and it changed name to the Research and Innovation Council in Jan. 2009. The major duties of the Research and Innovation Council include the assessment of country’s development, deals with the affairs regarding science, technology, innovative policy, human resource, and provides the government with aforementioned schedules and plans, deals with fund-assignment concerning public research development and innovative research, coordinates with all government’s activities upon the area of science, technology, and innovative policy, and executes the government’s other missions. The Research and Innovation Council is an integration unit for Finland’s national technology policies, and it originally is a consulting agency between the cabinet and Ministries. However, in the actual operation, its scope of authority has already covered coordination function, and turns to direct to make all kinds of policies related to national science technology development. In addition, the consulting suggestions related to national scientific development policies made by the Research and Innovation Council for the cabinet and the heads of Ministries, the conclusion has to be made as a “Key Policy Report” in every three year. The Report has included “Science, Technology, Innovation” in 2006, “Review 2008” in 2008, and the newest “Research and Innovation Policy Guidelines for 2011-2015” in 2010. Regarding the formation and duration of the Research and Innovation Council, its duration follows the government term. As for its formation, the Prime Minister is a chairman of the Research and Innovation Council, and the membership consists of the Minister of Education and Science, the Minister of Economy, the Minister of Finance and a maximum of six other ministers appointed by the Government. In addition to the Ministerial members, the Council shall comprise ten other members appointed by the Government for the parliamentary term. The Members must comprehensively represent expertise in research and innovation. The structure of Council includes the Council Secretariat, the Administrative Assistant, the Science and Education Subcommittee, and the Technology and Innovation Subcommittee. The Council has the Science and Education Subcommittee and the Technology and Innovation Subcommittee with preparatory tasks. There are chaired by the Ministry of Education and Science and by the Minister of Economy, respectively. The Council’s Secretariat consists of one full-time Secretary General and two full-time Chief Planning Officers. The clerical tasks are taken care of at the Ministry of Education and Culture. (B) The Agency of Finland’s Technology Policy Management The Ministries mainly take the responsibility for Finland’s technology policy management, which includes the Ministry of Education and Culture, the Ministry of Employment and Economy, the Ministry of Social Affairs and Health, the Ministry of Agriculture and Forestry, the Ministry of Defense, the Ministry of Transport and Communication, the Ministry of Environment, the Ministry of Financial, and the Ministry of Justice. In the aforementioned Ministries, the Ministry of Education and Culture and the Ministry of Employment and Economy are mainly responsible for Finland national scientific technology development, and take charge of national scientific policy and national technical policy, respectively. The goal of national scientific policy is to promote fundamental scientific research and to build up related scientific infrastructures; at the same time, the authority of the Ministry of Education and Culture covers education and training, research infrastructures, fundamental research, applied research, technology development, and commercialization. The main direction of Finland’s national scientific policy is to make sure that scientific technology and innovative activities can be motivated aggressively in universities, and its objects are, first, to raise research funds and maintain research development in a specific ratio; second, to make sure that no matter on R&D institutions or R&D training, it will reach fundamental level upon funding or environment; third, to provide a research network for Finland, European Union and global research; fourth, to support the research related to industries or services based upon knowledge-innovation; fifth, to strengthen the cooperation between research initiators and users, and spread R&D results to find out the values of commercialization, and then create a new technology industry; sixth, to analyze the performance of national R&D system. As for the Ministry of Employment and Economy, its major duties not only include labor, energy, regional development, marketing and consumer policy, but also takes responsibilities for Finland’s industry and technical policies, and provides industries and enterprises with a well development environment upon technology R&D. The business scope of the Ministry of Employment and Economy puts more focus on actual application of R&D results, it covers applied research of scientific technology, technology development, commercialization, and so on. The direction of Finland’s national technology policy is to strengthen the ability and creativity of industries’ technology development, and its objects are, first, to develop the new horizons of knowledge with national innovation system, and to provide knowledge-oriented products and services; second, to promote the efficiency of the government R&D funds; third, to provide cross-country R&D research networks, and support the priorities of technology policy by strengthening bilateral or multilateral cooperation; fourth, to raise and to broaden the efficiency of research discovery; fifth, to promote the regional development by technology; sixth, to evaluate the performance of technology policy; seventh, to increase the influence of R&D on technological change, innovation and society; eighth, to make sure that technology fundamental structure, national quality policy and technology safety system will be up to international standards. (C) The Agency of Finland’s Technology Policy Management and Subsidy As to the agency of Finland’s technology policy management and subsidy, it is composed of the Academy of Finland (AOF), the National Technology Agency (Tekes), and the Finnish National Fund Research and Development (SITRA). The fund of AOF comes from the Ministry of Education and Culture; the fund of Tekes comes from the Ministry of Employment and Economy, and the fund of SITRA comes from independent public fund supervised by the Finland’s Congress. (D) The Agency of Finland’s Technology Plan Execution As to the agency of Finland’s technology plan execution, it mainly belongs to the universities under Ministries, polytechnics, national technology research institutions, and other related research institutions. Under the Ministry of Education and Culture, the technology plans are executed by 16 universities, 25 polytechnics, and the Research Institute for the Language of Finland; under the Ministry of Employment and Economy, the technology plans are executed by the Technical Research Centre of Finland (VTT), the Geological Survey of Finnish, the National Consumer Research Centre; under the Ministry of Social Affairs and Health, the technology plans are executed by the National Institute for Health and Welfare, the Finnish Institute of Occupational Health, and University Central Hospitals; under the Ministry of Agriculture and Forestry, the technology plans are executed by the Finnish Forest Research Institute (Metla), the Finnish Geodetic Institute, and the Finnish Game and Fisheries Research Institute (RKTL); under the Ministry of Defense, the technology plans are executed by the Finnish Defense Forces’ Technical Research Centre (Pvtt); under the Ministry of Transport and Communications, the technology plans are executed by the Finnish Meteorological Institute; under the Ministry of Environment, the technology plans are executed by the Finnish Environment Institute (SYKE); under the Ministry of Financial, the technology plans are executed by the Government Institute for Economic Research (VATT). At last, under the Ministry of Justice, the technology plans are executed by the National Research Institute of Legal Policy.
The Tax Benefit of “Act for Establishment and Administration of Science Parks” and the Relational Norms for InnovationThe Tax Benefit of “Act for Establishment and Administration of Science Parks” and the Relational Norms for Innovation “Act for Establishment and Administration of Science Parks” was promulgated in 1979, and was amended entirely in May 15, 2018, announced in June 6. The title was revised from “Act for Establishment and Administration of Science ‘Industrial’ Parks” to “Act for Establishment and Administration of Science Parks” (it would be called “the Act” in this article). It was a significant transition from traditional manufacture into technological innovation. For encouraging different innovative technology enter into the science park, there is tax benefit in the Act. When the park enterprises import machines, equipment, material and so on from foreign country, the import duties, commodity tax, and business tax shall be exempted; moreover, when the park enterprises export products and services, it will have given favorable business and commodity tax free.[1] Furthermore, the park bureaus also exempt collection of land rent.[2] If they have approval for importing or exporting products, they do not need to apply for permission.[3] In the sub-law, there is also regulations of bonding operation.[4] To sum up, for applying the benefit of the act, enterprises approved for establishment in science parks still require to manufacture products. Such regulations are confined to industrial industry. Innovative companies dedicate in software, big data, or customer service, rarely gain benefits from taxation. In other norms,[5] there are also tax deduction or exemption for developing innovative industries. Based on promoting innovation, the enterprises following the laws of environmental protection, laborers’ safety, food safety and sanitation,[6] or investing in brand-new smart machines for their own utilize,[7] or licensing their intellectual property rights,[8] can deduct from its taxable income. In addition, the research creators from academic or research institutions,[9] or employee,[10] can declare deferral of the income tax payable for the shares distributed. In order to assist new invested innovative enterprises,[11] there are also relational benefit of tax. For upgrading the biotech and new pharmaceuticals enterprises, when they invest in human resource training, research and development, they can have deductible corporate income tax payable.[12] There is also tax favored benefits for small and medium enterprises in using of land, experiment of research, technology stocks, retaining of surplus, and additional employees hiring.[13] The present norms of tax are not only limiting in space or products but also encouraging in “research”. In other word, in each steps of the research of innovation, the enterprises still need to manufacture products from their own technology, fund and human resources. If the government could encourage open innovation with favored taxation, it would strengthen the capability of research and development for innovative enterprises. Supporting the innovation by taxation, the government can achieve the goal of scientific development more quickly and encourage them accepting guidance. “New York State Business Incubator and Innovation Hot Spot Support Act” can be an example, [14]the innovative enterprises accepting the guidance from incubators will have the benefit of tax on “personal income”, “sales and use” and “corporation franchise”. Moreover, focusing on key industries and exemplary cases, there are also the norms of tax exemption and tax abatement in China for promoting the development of technology.[15]The benefit of tax is not only in research but also in “the process of research”. To sum up, the government of Taiwan provides the benefit of tax for advancing the competition of outcomes in market, and for propelling the development of innovation. In order to accelerate the efficiency of scientific research, the government could draw lessons from America and China for enacting the norms about the benefit of tax and the constitution of guidance. [1] The Act §23. [2] Id. §24. [3] Id. §25. [4] Regulations Governing the Bonding Operations in Science Parks. [5] Such as Act for Development of Small and Medium Enterprises, Statute for Industrial Innovation, Act for the Development of Biotech and New Pharmaceuticals Industry. [6] Statute for Industrial Innovation §10. [7] Id. §10-1. [8] Id. §12-1. [9] Id. §12-2. [10] Id. §19-1. [11] Id. §23-1, §23-2, §23-3. [12] Act for the Development of Biotech and New Pharmaceuticals Industry §5, §6, §7. [13] Act for Development of Small and Medium Enterprises Chapter 4: §33 to §36-3. [14] New York State Department of Taxation and Finance Taxpayer Guidance Division, New York State Business Incubator and Innovation Hot Spot Support Act, Technical Memorandum TSB-M-14(1)C, (1)I, (2)S, at 1-6 (March 7, 2014), URL:http://www.wnyincubators.com/content/Innovation%20Hot%20Spot%20Technical%20Memorandum.pdf (last visited:December 18, 2019). [15] Enterprise Income Tax Law of the People’s Republic of China Chapter 4 “Preferential Tax Treatments”: §25 to §36 (2008 revised).
Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory ConsiderationsHard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations 2023/08/18 Since the launch of ChatGPT on November 30, 2022, the technology has been disrupting industries, shifting the way things used to work, bringing benefits but also problems. Several law suits were filed by artists, writers and voice actors in the US, claiming that the usage of copyright materials in training generative AI violates their copyright.[1] AI deepfake, hallucination and bias has also become the center of discussion, as the generation of fake news, false information, and biased decisions could deeply affect human rights and the society as a whole.[2] To retain the benefits of AI without causing damage to the society, regulators around the world have been accelerating their pace in establishing AI regulations. However, with the technology evolving at such speed and uncertainty, there is a lack of consensus on which regulation approach can effectively safeguard human rights while promoting innovation. This article will provide an overview of current AI regulation developments around the world, a preliminary analysis of the pros and cons of different regulation approaches, and point out some other elements that regulators should consider. I. An overview of the current AI regulation landscape around the world The EU has its lead in legislation, with its parliament adopting its position on the AI ACT in June 2023, heading into trilogue meetings that aim to reach an agreement by the end of this year.[3] China has also announced its draft National AI ACT, scheduled to enter its National People's Congress before the end of 2023.[4] It already has several administration rules in place, such as the 2021 regulation on recommendation algorithms, the 2022 rules for deep synthesis, and the 2023 draft rules on generative AI.[5] Some other countries have been taking a softer approach, preferring voluntary guidelines and testing schemes. The UK published its AI regulation plans in March, seeking views on its sectoral guideline-based pro-innovation regulation approach.[6] To minimize uncertainty for companies, it proposed a set of regulatory principles to ensure that government bodies develop guidelines in a consistent manner.[7] The US National Institute of Standards and Technology (NIST) released the AI Risk Management Framework in January[8], with a non-binding Blueprint for an AI Bill of Rights published in October 2022, providing guidance on the design and use of AI with a set of principles.[9] It is important to take note that some States have drafted regulations on specific subjects, such as New York City’s Final Regulations on Use of AI in Hiring and Promotion came into force in July 2023.[10] Singapore launched the world’s first AI testing framework and toolkit international pilot in May 2022, with the assistance of AWS, DBS Bank, Google, Meta, Microsoft, Singapore Airlines, etc. After a year of testing, it open-sourced the software toolkit in July 2023, to better develop the system.[11] There are also some countries still undecided on their regulation approach. Australia commenced a public consultation on its AI regulatory framework proposal in June[12], seeking views on its draft AI risk management approach.[13] Taiwan’s government announced in July 2023 to propose a draft AI basic law by September 2023, covering topics such as AI-related definition, privacy protections, data governance, risk management, ethical principles, and industrial promotion.[14] However, the plan was recently postponed, indicating a possible shift towards voluntary or mandatory government principles and guidance, before establishing the law.[15] II. Hard law or soft law? The pros and cons of different regulatory approaches One of the key advantages of hard law in AI regulation is its ability to provide binding legal obligations and legal enforcement mechanisms that ensure accountability and compliance.[16] Hard law also provides greater legal certainty, transparency and remedies for consumers and companies, which is especially important for smaller companies that do not have as many resources to influence and comply with fast-changing soft law.[17] However, the legislative process can be time-consuming, slower to update, and less agile.[18] This poses the risk of stifling innovation, as hard law inevitably cannot keep pace with the rapidly evolving AI technology.[19] In contrast, soft law represents a more flexible and adaptive approach to AI regulation. As the potential of AI still remains largely mysterious, government bodies can formulate principles and guidelines tailored to the regulatory needs of different industry sectors.[20] In addition, if there are adequate incentives in place for actors to comply, the cost of enforcement could be much lower than hard laws. Governments can also experiment with several different soft law approaches to test their effectiveness.[21] However, the voluntary nature of soft law and the lack of legal enforcement mechanisms could lead to inconsistent adoption and undermine the effectiveness of these guidelines, potentially leaving critical gaps in addressing AI's risks.[22] Additionally, in cases of AI-related harms, soft law could not offer effective protection on consumer rights and human rights, as there is no clear legal obligation to facilitate accountability and remedies.[23] Carlos Ignacio Gutierrez and Gary Marchant, faculty members at Arizona State University (ASU), analyzed 634 AI soft law programs against 100 criteria and found that two-thirds of the program lack enforcement mechanisms to deliver its anticipated AI governance goals. He pointed out that credible indirect enforcement mechanisms and a perception of legitimacy are two critical elements that could strengthen soft law’s effectiveness.[24] For example, to publish stem cell research in top academic journals, the author needs to demonstrate that the research complies with related research standards.[25] In addition, companies usually have a greater incentive to comply with private standards to avoid regulatory shifts towards hard laws with higher costs and constraints.[26] III. Other considerations Apart from understanding the strengths and limitations of soft law and hard law, it is important for governments to consider each country’s unique differences. For example, Singapore has always focused on voluntary approaches as it acknowledges that being a small country, close cooperation with the industry, research organizations, and other governments to formulate a strong AI governance practice is much more important than rushing into legislation.[27] For them, the flexibility and lower cost of soft regulation provide time to learn from industries to prevent forming rules that aren’t addressing real-world issues.[28] This process allows preparation for better legislation at a later stage. Japan has also shifted towards a softer approach to minimize legal compliance costs, as it recognizes its slower position in the AI race.[29] For them, the EU AI Act is aiming at regulating Giant Tech companies, rather than promoting innovation.[30] That is why Japan considers that hard law does not suit the industry development stage they’re currently in.[31] Therefore, they seek to address legal issues with current laws and draft relevant guidance.[32] IV. Conclusion As the global AI regulatory landscape continues to evolve, it is important for governments to consider the pros and cons of hard law and soft law, and also country-specific conditions in deciding what’s suitable for the country. Additionally, a regular review on the effectiveness and impact of their chosen regulatory approach on AI’s development and the society is recommended. [1] ChatGPT and Deepfake-Creating Apps: A Running List of Key AI-Lawsuits, TFL, https://www.thefashionlaw.com/from-chatgpt-to-deepfake-creating-apps-a-running-list-of-key-ai-lawsuits/ (last visited Aug 10, 2023); Protection for Voice Actors is Artificial in Today’s Artificial Intelligence World, The National Law Review, https://www.natlawreview.com/article/protection-voice-actors-artificial-today-s-artificial-intelligence-world (last visited Aug 10, 2023). [2] The politics of AI: ChatGPT and political bias, Brookings, https://www.brookings.edu/articles/the-politics-of-ai-chatgpt-and-political-bias/ (last visited Aug 10, 2023); Prospect of AI Producing News Articles Concerns Digital Experts, VOA, https://www.voanews.com/a/prospect-of-ai-producing-news-articles-concerns-digital-experts-/7202519.html (last visited Aug 10, 2023). [3] EU AI Act: first regulation on artificial intelligence, European Parliament, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Aug 10, 2023). [4] 中國國務院發布立法計畫 年內審議AI法草案,經濟日報(2023/06/09),https://money.udn.com/money/story/5604/7223533 (last visited Aug 10, 2023). [5] id [6] A pro-innovation approach to AI regulation, GOV.UK, https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper (last visited Aug 10, 2023). [7] id [8] AI RISK MANAGEMENT FRAMEWORK, NIST, https://www.nist.gov/itl/ai-risk-management-framework (last visited Aug 10, 2023). [9] The White House released an ‘AI Bill of Rights’, CNN, https://edition.cnn.com/2022/10/04/tech/ai-bill-of-rights/index.html (last visited Aug 10, 2023). [10] New York City Adopts Final Regulations on Use of AI in Hiring and Promotion, Extends Enforcement Date to July 5, 2023, Littler https://www.littler.com/publication-press/publication/new-york-city-adopts-final-regulations-use-ai-hiring-and-promotionv (last visited Aug 10, 2023). [11] IMDA, Fact sheet - Open-Sourcing of AI Verify and Set Up of AI Verify Foundation (2023), https://www.imda.gov.sg/-/media/imda/files/news-and-events/media-room/media-releases/2023/06/7-jun---ai-annoucements---annex-a.pdf (last visited Aug 10, 2023). [12] Supporting responsible AI: discussion paper, Australia Government Department of Industry, Science and Resources,https://consult.industry.gov.au/supporting-responsible-ai (last visited Aug 10, 2023). [13] Australian Government Department of Industry, Science and Resources, Safe and responsible AI in Australia (2023), https://storage.googleapis.com/converlens-au-industry/industry/p/prj2452c8e24d7a400c72429/public_assets/Safe-and-responsible-AI-in-Australia-discussion-paper.pdf (last visited Aug 10, 2023). [14] 張璦,中央通訊社,AI基本法草案聚焦隱私保護、應用合法性等7面向 擬設打假中心,https://www.cna.com.tw/news/ait/202307040329.aspx (最後瀏覽日:2023/08/10)。 [15] 蘇思云,中央通訊社,2023/08/01,鄭文燦:考量技術發展快應用廣 AI基本法延後提出,https://www.cna.com.tw/news/afe/202308010228.aspx (最後瀏覽日:2023/08/10)。 [16] supra, note 13, at 27. [17] id. [18] id., at 28. [19] Soft law as a complement to AI regulation, Brookings, https://www.brookings.edu/articles/soft-law-as-a-complement-to-ai-regulation/ (last visited Aug 10, 2023). [20] supra, note 5. [21] Gary Marchant, “Soft Law” Governance of Artificial Intelligence (2019), https://escholarship.org/uc/item/0jq252ks (last visited Aug 10, 2023). [22] How soft law is used in AI governance, Brookings,https://www.brookings.edu/articles/how-soft-law-is-used-in-ai-governance/ (last visited Aug 10, 2023). [23] supra, note 13, at 27. [24] Why Soft Law is the Best Way to Approach the Pacing Problem in AI, Carnegie Council for Ethics in International Affairs,https://www.carnegiecouncil.org/media/article/why-soft-law-is-the-best-way-to-approach-the-pacing-problem-in-ai (last visited Aug 10, 2023). [25] id. [26] id. [27] Singapore is not looking to regulate A.I. just yet, says the city-state’s authority, CNBC,https://www.cnbc.com/2023/06/19/singapore-is-not-looking-to-regulate-ai-just-yet-says-the-city-state.html#:~:text=Singapore%20is%20not%20rushing%20to,Media%20Development%20Authority%2C%20told%20CNBC (last visited Aug 10, 2023). [28] id. [29] Japan leaning toward softer AI rules than EU, official close to deliberations says, Reuters, https://www.reuters.com/technology/japan-leaning-toward-softer-ai-rules-than-eu-source-2023-07-03/ (last visited Aug 10, 2023). [30] id. [31] id. [32] id.