Taiwan Announced the Biobanks Regulations and Management Practices

Taiwan Has Passed “Statute of Human Biobank Management” to Maintain Privacy and Improve Medicine Industries

Due to lack of regulations, divergent opinions abounded about the establishment of Biobanks and collection of human biological specimen. For example, a researcher in an academic research organization and a hospital-based physician collected biospecimens from native Taiwanese. Although they insisted that the collections were for research only, human rights groups, ethics researchers, and groups for natives´ benefits condemned the collections as an invasion of human rights. Consequently, the Taiwanese government recognized the need for Biobanks regulation.

To investigate the relationship between disease and multiple factors and to proceed with possible prevention, The Legislative Yuan Social Welfare and Healthy Environment Committee has passed "the draft statute of human biobank management" through primary reviewing process on December 30, 2009 and subsequently passed through entire three-reading procedure on January 7, 2010. Therefore, the medical and research institute not only can set up optimal gene database for particular disease curing, but also can collect blood sample for database establishment, legally. However, the use of sample collections will be excluded from the use of judiciary purpose.

In the light of to establish large scale biobank is going to face the fundamental human right issue, from the viewpoint of biobank management, it is essential not only to set up the strict ethics regulation for operational standard, but also to make the legal environment more complete. For instance, the Department of Health, Executive Yuan had committed the earlier planning of Taiwan biobank establishment to the Academic Sinica in 2006, and planned to collect bio-specimen by recruiting volunteers. However, it has been criticized by all circles that it might be considered violating the Constitution article 8 provision 1 front paragraph, and article 22 rules; moreover, it might also infringe the personal liberty or body information privacy. Therefore, the Executive Yuan has passed the draft statute of human biobank management which was drafted and reviewed by Department of Health during the 3152nd meeting, on July 16, 2009, to achieve the goal of protecting our nation’s privacy and promoting the development of medical science by management biomedical research affairs in more effective ways. Currently, the draft statute has been passed through the primary review procedure by the Legislative Yuan.

About the draft statute, there are several important points as following: (1) Sample Definition: Types of collected sample include human somatic cell, tissues, body fluids, or other derivatives; (2) Biobank Establishment: It requires not only to be qualified and permitted, but also to set up the ethical reviewing mechanism to strengthen its management and application; (3)Sample Collection and Participant Protection: In accordance with the draft statute, bio-specimen collecting should respect the living ethics during the time and refer to the "Medical Law" article 64 provision 1; before sample collection, all related points of attention should be kept in written form , the participant should be notified accordingly, and samples can only be collected with the participant’s consent. Furthermore, regarding the restrained read right and setting up participants’ sample process way if there were death or lost of their capacity; (4) Biobank Management: The safety regulation, obligation of active notification, free to retreat, data destruction, confidentiality and obligation, and termination of operation handling are stipulated; and (5) Biobank Application: According to the new draft statute, that the biological data can’t be used for other purposes, for example, the use of inquisition result for the "Civil law", article 1063, provision 2, prosecution for denying the parent-child relationship law suit", or according to the "Criminal law", article 213, provision 6. This rule not only protects the participants’ body information and their privacy right, but also clearly defines application limits, as well as to set up the mechanism for inner control and avoid conflict of interests to prevent unnecessary disputes.

Finally, the Department of Health noted that, as many medical researches has shown that the occurrence of diseases are mostly co-effected by various factors such as multiple genes and their living environment, rather than one single gene, developed countries have actively devoted to human biological sample collection for their national biobank establishment. The construction and usage of a large-scale human bank may bring up the critical issue such as privacy protection and ethical problems; however, to meet the equilibrium biomedical research promotion and citizen privacy issue will highly depend on the cooperation and trust between the public and private sectors.

Taiwan Department of Health Announced the Human Biobanks Information Security Regulation

The field of human biobanks will be governed by the Act of Human Biobanks (“Biobanks Act”) after its promulgation on February 3, 2010 in Taiwan. According to Article 13 of the Biobanks Act, a biobank owner should establish its directive rules based on the regulation of information security of biobanks announced by the competent authority. Thus the Department of Health announced the draft of the Human Biobanks Information Security Regulation (“Regulation”) for the due process requirement.

According to the Biobanks Act, only the government institutes, medical institutes, academic institutes, and research institutes are competent to establish biobanks (Article 4). In terms of the collecting of organisms, the participants should be informed of the relevant matters by reasonable patterns, and the collecting of organisms may be conducted after obtaining the written consent of the participants (Article 6). The relative information including the organisms and its derivatives are not allowed to be used except for biological and medical research. After all the protection of biobanks relative information above, the most important thing is the safety regulations and directive rules of the database administration lest all the restrictions of biobanks owners and the use be in vain.

The draft Regulation aims to strengthen the safety of biobanks database and assure the data, the systems, the equipments, and the web circumstances are safe for the sake of the participants’ rights. The significant aspects of the draft are described as below. At first, the regulation should refer to the ISO27001, ISO27002 and other official rules. Concerning the personnel management, the security assessment is required and the database management personnel and researchers may not serve concurrently. In case some tasks are outsourced, the contractor should be responsible for the information security; the nondisclosure agreement and auditing mechanism are required. The application system should update periodically including the anti-virus and firewall programs. The biobanks database should be separated physically form internet connection, including the prohibition of information transforming by email or any other patterns through internet. The authorizing protocol of access to the biobanks should be established and all log files should be preserved in a period. The system establishment and maintenance should avoid remote control. In case the database system is physically out of the owner’s control, the authorization of the officer in charge is required. If an information security accident occurred, the bionbanks owner should contact the competent authority immediately and inform the participants by adequate tunnel. The biobanks owner should establish annual security auditing program and the project auditing will be conducted subject to the necessity. To sum up, while the biobanks database security regulation is fully established, the biobanks owners will have the sufficient guidance in connection with the biobank information security to comply with in the future.

※Taiwan Announced the Biobanks Regulations and Management Practices,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=55&tp=2&i=168&d=6133 (Date:2025/07/13)
Quote this paper
You may be interested
Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (1) – For Example, The Finnish Innovation Fund (“SITRA”)

Impact of Government Organizational Reform to Scientific Research Legal System and Response Thereto (1) – For Example, The Finnish Innovation Fund (“SITRA”) I. Foreword   We hereby aim to analyze and research the role played by The Finnish Innovation Fund (“Sitra”) in boosting the national innovation ability and propose the characteristics of its organization and operation which may afford to facilitate the deliberation on Taiwan’s legal system. Sitra is an independent organization which is used to reporting to the Finnish Parliament directly, dedicated to funding activities to boost sustainable development as its ultimate goal and oriented toward the needs for social change. As of 2004, it promoted the fixed-term program. Until 2012, it, in turn, primarily engaged in 3-year program for ecological sustainable development and enhancement of society in 2012. The former aimed at the sustainable use of natural resources to develop new structures and business models and to boost the development of a bioeconomy and low-carbon society, while the latter aimed to create a more well-being-oriented public administrative environment to upgrade various public sectors’ leadership and decision-making ability to introduce nationals’ opinion to policies and the potential of building new business models and venture capital businesses[1]. II. Standing and Operating Instrument of Sitra 1. Sitra Standing in Boosting of Finnish Innovation Policies (1) Positive Impact from Support of Innovation R&D Activities by Public Sector   Utilization of public sector’s resources to facilitate and boost industrial innovation R&D ability is commonly applied in various countries in the world. Notwithstanding, the impact of the public sector’s investment of resources produced to the technical R&D and the entire society remains explorable[2]. Most studies still indicate positive impact, primarily as a result of the market failure. Some studies indicate that the impact of the public sector’s investment of resources may be observable at least from several points of view, including: 1. The direct output of the investment per se and the corresponding R&D investment potentially derived from investees; 2. R&D of outputs derived from the R&D investment, e.g., products, services and production methods, etc.; 3. direct impact derived from the R&D scope, e.g., development of a new business, or new business and service models, etc.; 4. impact to national and social economies, e.g., change of industrial structures and improvement of employment environment, etc. Most studies indicate that from the various points of view, the investment by public sector all produced positive impacts and, therefore, such investment is needed definitely[3]. The public sector may invest in R&D in diversified manners. Sitra invests in the “market” as an investor of corporate venture investment market, which plays a role different from the Finnish Funding Agency for Technology and Innovation (“Tekes”), which is more like a governmental subsidizer. Nevertheless, Finland’s characteristics reside in the combination of multiple funding and promotion models. Above all, due to the different behavior model, the role played by the former is also held different from those played by the general public sectors. This is why we choose the former as the subject to be studied herein. Data source: Jari Hyvärinen & Anna-Maija Rautiainen, Measuring additionality and systemic impacts of public research and development funding – the case of TEKES, FINLAND, RESEARCH EVALUATION, 16(3), 205, 206 (2007). Fig. 1 Phased Efforts of Resources Invested in R&D by Public Sector (2) Two Sided f Role Played by Sitra in Boosting of Finnish Innovation Policies   Sitra has a very special position in Finland’s national innovation policies, as it not only helps successful implementation of the innovation policies but also acts an intermediary among the relevant entities. Sitra was founded in 1967 under supervision of the Bank of Finland before 1991, but was transformed into an independent foundation under the direction of the Finnish Parliament[4].   Though Sitra is a public foundation, its operation will not be intervened or restricted by the government. Sitra may initiate any innovation activities for its new organization or system, playing a role dedicated to funding technical R&D or promoting venture capital business. Meanwhile, Sitra also assumes some special function dedicated to decision-makers’ training and organizing decision-maker network to boost structural change. Therefore, Sitra may be identified as a special organization which may act flexibly and possess resources at the same time and, therefore, may initiate various innovation activities rapidly[5].   Sitra is authorized to boost the development of innovation activities in said flexible and characteristic manner in accordance with the Finland Innovation Fund Act (Laki Suomen itsenäisyyden juhlarahastosta). According to the Act, Finland established Sitra in 1967 and Sitra was under supervision of Bank of Finland (Article 1). Sitra was established in order to boost the stable growth of Finland’s economy via the national instrument’s support of R&D and education or other development instruments (Article 2). The policies which Sitra may adopt include loaning or funding, guarantee, marketable securities, participation in cooperative programs, partnership or equity investment (Article 3). If necessary, Sitra may collect the title of real estate or corporate shares (Article 7). Data source: Finnish innovation system, Research.fi, http://www.research.fi/en/innovationsystem.html (last visited Mar. 15, 2013). Fig. 2 Finnish Scientific Research Organization Chart   Sitra's innovation role has been evolved through two changes. Specifically, Sitra was primarily dedicated to funding technical R&D among the public sectors in Finland, and the funding model applied by Sitra prior to the changes initiated the technical R&D promotion by Tekes, which was established in 1983. The first change of Sitra took place in 1987. After that, Sitra turned to focus on the business development and venture capital invested in technology business and led the venture capital investment. Meanwhile, it became a partner of private investment funds and thereby boosted the growth of venture capital investments in Finland in 1990. In 2000, the second change of Sitra took place and Sitra’s organization orientation was changed again. It achieved the new goal for structural change step by step by boosting the experimental social innovation activities. Sitra believed that it should play the role contributing to procedural change and reducing systematic obstacles, e.g., various organizational or institutional deadlocks[6].   Among the innovation policies boosted by the Finnish Government, the support of Start-Ups via governmental power has always been the most important one. Therefore, the Finnish Government is used to playing a positive role in the process of developing the venture capital investment market. In 1967, the Government established a venture capital company named Sponsor Oy with the support from Bank of Finland, and Sponsor Oy was privatized after 1983. Finland Government also established Kera Innovation Fund (now known as Finnvera[7]) in 1971, which was dedicated to boosting the booming of Start-Ups in Finland jointly with Finnish Industry Investment Ltd. (“FII”) established by the Government in 1994, and Sitra, so as to make the “innovation” become the main development force of the country[8] .   Sitra plays a very important role in the foundation and development of venture capital market in Finland and is critical to the Finnish Venture Capital Association established in 1990. After Bank of Finland was under supervision of Finnish Parliament in 1991, Sitra became on the most important venture capital investors. Now, a large portion of private venture capital funds are provided by Sitra[9]. Since Sitra launched the new strategic program in 2004, it has turned to apply smaller sized strategic programs when investing young innovation companies, some of which involved venture capital investment. The mapping of young innovation entrepreneurs and angel investors started as of 1996[10].   In addition to being an important innovation R&D promoter in Finland, Sitra is also an excellent organization which is financially self-sufficient and tends to gain profit no less than that to be generated by a private enterprise. As an organization subordinated to the Finnish Parliament immediately, all of Sitra’s decisions are directly reported to the Parliament (public opinion). Chairman of Board, Board of Directors and supervisors of Sitra are all appointed by the Parliament directly[11]. Its working funds are generated from interest accruing from the Fund and investment income from the Fund, not tax revenue or budget prepared by the Government any longer. The total fund initially founded by Bank of Finland amounted to DEM100,000,000 (approximately EUR17,000,000), and was accumulated to DEM500,000,000 (approximately EUR84,000,000) from 1972 to 1992. After that, following the increase in market value, its nominal capital amounted to DEM1,400,000,000 (approximately EUR235,000,000) from 1993 to 2001. Obviously, Sitra generated high investment income. Until 2010, it has generated the investment income amounting to EUR697,000,000 .   In fact, Sitra’s concern about venture capital investment is identified as one of the important changes in Finland's national technical R&D polices after 1990[13]. Sitra is used to funding businesses in three manners, i.e., direct investment in domestic stock, investment in Finnish venture capital funds, and investment in international venture capital funds, primarily in four industries, technology, life science, regional cooperation and small-sized & medium-sized starts-up. Meanwhile, it also invests in venture capital funds for high-tech industries actively. In addition to innovation technology companies, technical service providers are also its invested subjects[14]. 2. “Investment” Instrument Applied by Sitra to Boost Innovation Business   The Starts-Up funding activity conducted by Sitra is named PreSeed Program, including INTRO investors’ mapping platform dedicated to mapping 450 angel investment funds and entrepreneurs, LIKSA engaged in working with Tekes to funding new companies no more than EUR40,000 for purchase of consultation services (a half thereof funded by Tekes, and the other half funded by Sitra in the form of loan convertible to shares), DIILI service[15] dedicated to providing entrepreneurs with professional sale consultation resources to integrate the innovation activity (product thereof) and the market to remedy the deficit in the new company’s ability to sell[16].   The investment subjects are stated as following. Sitra has three investment subjects, namely, corporate investments, fund investments and project funding. (1) Corporate investment   Sitra will not “fund” enterprises directly or provide the enterprises with services without consideration (small-sized and medium-sized enterprises are aided by other competent authorities), but invest in the businesses which are held able to develop positive effects to the society, e.g., health promotion, social problem solutions, utilization of energy and effective utilization of natural resources. Notwithstanding, in order to seek fair rate of return, Sitra is dedicated to making the investment (in various enterprises) by its professional management and technology, products or competitiveness of services, and ranging from EUR300,000 to EUR1,000,000 to acquire 10-30% of the ownership of the enterprises, namely equity investment or convertible funding. Sitra requires its investees to value corporate social responsibility and actively participate in social activities. It usually holds the shares from 4 years to 10 years, during which period it will participate the corporate operation actively (e.g., appointment of directors)[17]. (2) Fund investments   For fund investments[18], Sitra invests in more than 50 venture capital funds[19]. It invests in domestic venture capital fund market to promote the development of the market and help starts-up seek funding and create new business models, such as public-private partnerships. It invests in international venture capital funds to enhance the networking and solicit international funding, which may help Finnish enterprises access international trend information and adapt to the international market. (3) Project funding   For project funding, Sitra provides the on-site information survey (supply of information and view critical to the program), analysis of business activities (analysis of future challenges and opportunities) and research & drafting of strategies (collection and integration of professional information and talents to help decision making), and commissioning of the program (to test new operating model by commissioning to deal with the challenge from social changes). Notwithstanding, please note that Sitra does not invest in academic study programs, research papers or business R&D programs[20]. (4) DIILI Investment Model Integrated With Investment Absorption   A Start-Up usually will not lack technologies (usually, it starts business by virtue of some advanced technology) or foresighted philosophy when it is founded initially, while it often lacks the key to success, the marketing ability. Sitra DIILI is dedicated to providing the professional international marketing service to help starts-up gain profit successfully. Owing to the fact that starts-up are usually founded by R&D personnel or research-oriented technicians, who are not specialized in marketing and usually retains no sufficient fund to employ marketing professionals, DILLI is engaged in providing dedicated marketing talents. Now, it employs about 85 marketing professionals and seeks to become a start-up partner by investing technical services.   Notwithstanding, in light of the characteristics of Sitra’s operation and profitability, some people indicate that it is more similar to a developer of an innovation system, rather than a neutral operator. Therefore, it is not unlikely to hinder some work development which might be less profitable (e.g., establishment of platform). Further, Sitra is used to developing some new investment projects or areas and then founding spin-off companies after developing the projects successfully. The way in which it operates seems to be non-compatible with the development of some industries which require permanent support from the public sector. The other issues, such as INTRO lacking transparency and Sitra's control over investment objectives likely to result in adverse choice, all arise from Sitra’s consideration to its own investment opportunities and profit at the same time of mapping. Therefore, some people consider that it should be necessary to move forward toward a more transparent structure or a non-income-oriented funding structure[21] . Given this, the influence of Sitra’s own income over upgrading of the national innovation ability when Sitra boosts starts-up to engage in innovation activities is always a concern remaining disputable in the Finnish innovation system. 3. Boosting of Balance in Regional Development and R&D Activities   In order to fulfill the objectives under Lisbon Treaty and to enable EU to become the most competitive region in the world, European Commission claims technical R&D as one of its main policies. Among other things, under the circumstance that the entire R&D competitiveness upgrading policy is always progressing sluggishly, Finland, a country with a population of 5,300,000, accounting for 1.1% of the population of 27 EU member states, was identified as the country with the No. 1 innovation R&D ability in the world by World Economic Forum in 2005. Therefore, the way in which it promotes innovation R&D policies catches the public eyes. Some studies also found that the close relationship between R&D and regional development policies of Finland resulted in the integration of regional policies and innovation policies, which were separated from each other initially, after 1990[22]. Finland has clearly defined the plan to exploit the domestic natural resources and human resources in a balanced and effective manner after World War II. At the very beginning, it expanded the balance of human resources to low-developed regions, in consideration of the geographical politics, but in turn, it achieved national balanced development by meeting the needs for a welfare society and mitigation of the rural-urban divide as time went by. The Finnish innovation policies which may resort to technical policies retroactively initially drove the R&D in the manners including upgrading of education degree, founding of Science and Technology Policy Council and Sitra, establishment of Academy of Finland (1970) and establishment of the technical policy scheme, et al.. Among other things, people saw the role played by Sitra in Finland’s knowledge-intensive society policy again. From 1991 to 1995, the Finnish Government officially included the regional competitiveness into the important policies. The National Industrial Policy for Finland in 1993 adopted the strategy focusing on the development based on competitive strength in the regional industrial communities[23].   Also, some studies indicated that in consideration of Finland’s poor financial and natural resources, its national innovation system should concentrate the resources on the R&D objectives which meet the requirements about scale and essence. Therefore, the “Social Innovation, Social and Economic Energy Re-building Learning Society” program boosted by Sitra as the primary promoter in 2002 defined the social innovation as “the reform and action plan to enhance the regulations of social functions (law and administration), politics and organizational structure”, namely reform of the mentality and cultural ability via social structural changes that results in social economic changes ultimately. Notwithstanding, the productivity innovation activity still relies on the interaction between the enterprises and society. Irrelevant with the Finnish Government’s powerful direction in technical R&D activities, in fact, more than two-thirds (69.1%) of the R&D investment was launched by private enterprises and even one-thirds launched by a single enterprise (i.e., Nokia) in Finland. At the very beginning of 2000, due to the impact of globalization to Finland’s innovation and regional policies, a lot of R&D activities were emigrated to the territories outside Finland[24]. Multiple disadvantageous factors initiated the launch of national resources to R&D again. The most successful example about the integration of regional and innovation policies in Finland is the Centres of Expertise Programme (CEP) boosted by it as of 1990. Until 1994, there have been 22 centres of expertise distributed throughout Finland. The centres were dedicated to integrating local universities, research institutions and enterprise for co-growth. The program to be implemented from 2007 to 2013 planned 21 centres of expertise (13 groups), aiming to promote the corporate sectors’ cooperation and innovation activities. CEP integrated local, regional and national resources and then focused on the businesses designated to be developed[25]. [1] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [2] Jari Hyvärinen & Anna-Maija Rautiainen, Measuring additionality and systemic impacts of public research and development funding – the case of TEKES, FINLAND, RESEARCH EVALUATION, 16(3), 205, 208 (2007). [3] id. at 206-214. [4] Charles Edquist, Tterttu Luukkonen & Markku Sotarauta, Broad-Based Innovation Policy, in EVALUATION OF THE FINNISH NATIONAL INNOVATION SYSTEM – FULL REPORT 11, 25 (Reinhilde Veugelers st al. eds., 2009). [5] id. [6] id. [7] Finnvera is a company specialized in funding Start-Ups, and its business lines include loaning, guarantee, venture capital investment and export credit guarantee, etc. It is a state-run enterprise and Export Credit Agency (ECA) in Finland. Finnvera, http://annualreport2012.finnvera.fi/en/about-finnvera/finnvera-in-brief/ (last visited Mar. 10, 2013). [8] Markku Maula, Gordon Murray & Mikko Jääskeläinen, MINISTRY OF TRADE AND INDUSTRY, Public Financing of Young Innovation Companies in Finland 32 (2006). [9] id. at 33. [10] id. at 41. [11] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [12] Sitra, http://www.sitra.fi/en (last visited Mar. 10, 2013). [13] The other two were engaged in boosting the regional R&D center and industrial-academy cooperative center programs. Please see Gabriela von Blankenfeld-Enkvist, Malin Brännback, Riitta Söderlund & Marin Petrov, ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT [OECD],OECD Case Study on Innovation: The Finnish Biotechnology Innovation System 15 (2004). [14] id. at20. [15] DIILI service provides sales expertise for SMEs, Sitra, http://www.sitra.fi/en/articles/2005/diili-service-provides-sales-expertise-smes-0 (last visited Mar. 10, 2013). [16] Maula, Murray & Jääskeläinen, supra note 8 at 41-42. [17] Corporate investments, Sitra, http://www.sitra.fi/en/corporate-investments (last visited Mar. 10, 2013). [18] Fund investments, Sitra, http://www.sitra.fi/en/fund-investments (last visited Mar. 10, 2013). [19] The venture capital funds referred to herein mean the pooled investment made by the owners of venture capital, while whether it exists in the form of fund or others is not discussed herein. [20] Project funding, Sitra, http://www.sitra.fi/en/project-funding (last visited Mar. 10, 2013). [21] Maula, Murray & Jääskeläinen, supra note 8 at 42. [22] Jussi S. Jauhiainen, Regional and Innovation Policies in Finland – Towards Convergence and/or Mismatch? REGIONAL STUDIES, 42(7), 1031, 1032-1033 (2008). [23] id. at 1036. [24] id. at 1038. [25] id. at 1038-1039.

A Discussion on Introducing the Concept of “Government Procurement Innovation” and Suggestions for Legislation

I. Introduction In Finland, the Finnish Funding Agency for Technology and Innovation, or TEKES1, has proposed the Innovations in Public Procurement, or IPP2, which can be seen as the origin of innovative government procurement solutions all over the world. As such, this paper is an attempt to explore the possibility of introducing improvements to government innovation, within procurement in the Republic of China (ROC). The IPP scheme of Finland may be used as an observational tool for the analysis of innovative ideas within the international community, for comparison with government procurement, the legislation of the scientific research subsidy, and scientific research procurement currently effective in ROC. The findings could serve as a reference for related government agencies. The concept of Public Procurement of Innovation, or PPI, in the EU could serve as the benchmark for the ROC on studying the feasibility of introducing this system. In this paper an analysis of the legal system of the ROC will be conducted in the first place to clarify the objective of introducing the concept of PPI into existing legal procedures. This is particularly the case, since that subsidy and procurement do indeed form the two-pronged policy that is currently in effect. First of all, is PPI essential to the systems that could be or could only be enforced under “government procurement”? Secondly, could PPI be introduced into relevant procedures, as explained in preceding sections? Are there any provisions of law that could be amended for such a purpose? And in what direction should we focus our attention? The concept of PPI is a solution under rapid social change, certain products or services are scarce or absent for coping with the needs of rapid social change, to the extent that an innovative solution is necessary. In addition, government procurement is the tool for encouraging the proposal of innovative solutions to mold a friendly market through the participation of the users. (But we have to be cautious. This need is different from green procurement, which requires government procurement to create a market of pre-commercialized purchase 3.) The procurement and innovation subsidy by TEKES of Finland takes the public sector as the recipients of subsidy so that the recipients of subsidy could introduce the mode of dialogue between the users and the suppliers in the course of procurement. At the planning stage of the IPP in Finland, government agencies could receive a subsidy ranging from 25% to 75% of expenditure (including the provision of technology dialogue with different targets, long-term development analysis, the design of the specification for the subject matter that is purchased comparison of different solutions) for the service programs provided by the suppliers. During the implementation stage of procurement, purchasing government agencies could also receive a subsidy of 75% for expenditure on innovation projects procured by the government under subsidy at planning stage, on the performance of tasks during research and development at the implementation stage. Or, they could be subsidized up to 50% for spending on tasks beyond research and development. The content of subsidy includes equipment, service (including management fees), travelling expenses, and other necessary expenses. The recipients of a subsidy from TEKES at these two stages, is dictated by the extent to which these government agencies are able to introduce the spirit of procurement innovation at planning and implementation stages. As such, the legal foundation for the introduction of PPI into scientific research subsidy within the ROC will be an immediate concern. In concrete terms, this is the legality of the agency for advocacy of industrial technology research and development in subsidizing government agencies using national science and technology development funds of the Executive Yuan (also known as Science Development Fund); the legality of the authority of Industrial Technology Department in subsidizing other departments of the public sector, and the issues of the applicability of the Scientific Research Procurement Monitoring Regulation to the appointment of external institutions for conducting market surveys on such needs by the public sector (collectively known as “the issues of subsidizing for innovation”). In seeking a solution on subsidy, we still have to fit dialogue between the recipients of a subsidy during the course of a ‘procurement’ project, within the legal framework currently in force. The fundamental spirit and primary concern for government procurement in the ROC, for example, will be the prevention of misconduct and corruption during the procurement procedure4. It is necessary to state such a requirement within the law, in order to avoid allegations of manipulation during the bidding process. Only by so doing could the spirit of PPI be introduced into the process. In other words, it would be a matter of sorting out the recipients of scientific research subsidy, government procurement, and scientific research procurement without causing a contradiction between “the participation of the suppliers and users of the end-requirement or service, in the determination of the specification, terms and conditions of the procurement” from the PPI of Finland and the applicable laws currently in force. It would be necessary to design the details of the procedures (collectively known as the “issues of innovation dialogue”), which takes up the second part of this research. In summary, this paper aims to explore the dialogue of aspects of government procurement, scientific research subsidy, and scientific research procurement. It is also an attempt to analyze the gravity of PPI and the dialogue. Finally, the findings of the discussion on the introduction of the concept of PPI to science and technology projects of the ROC (which may also be extended to the subsidy of the research and development in science and technology by the public sector of the ROC) will be presented, with consultation and recommendations for legislation. II. Analysis of the dialogue in the process of government procurement, scientific research subsidy, and scientific research procurement in the ROC (I) There is more than one tool within the ROC for the encouragement of research and development in science and technology Governments of different countries possess different policy tools to support or encourage the private sector in the research and development of science and technology in order to shore-up insufficient resources. From the perspective of government budgeting, the design of procedures may be identical or different. For example, the US federal government instituted the Federal Acquisition Regulation, FAR, and defined “acquisition” as “the acquiring by contract with appropriated funds of supplies or services (including construction) by and for the use of the Federal Government through purchase or lease, whether the supplies or services are already in existence or must be created, developed, demonstrated, or evaluated” 5. In light of the variation between its specific features and other services, Research and Development Contracting has been specifically regulated in section 35 of FAR, which states: “The primary purpose of contracted R&D programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary to achieve agency and national goals. Unlike contracts for supplies and services, most R&D contracts are directed toward objectives for which the work or methods cannot be precisely described in advance. It is difficult to judge the probabilities of success or required effort for technical approaches, some of which offer little or no early assurance of full success. The contracting process shall be used to encourage the best sources from the scientific and industrial community to become involved in the program and must provide an environment in which the work can be pursued with reasonable flexibility and minimum administrative burden. 6” In the EU, they defined research and development beyond government procurement regulation: According to Council Directive 92/50/EEC, or known as EU Directive, the scope of application as stated in paragraph (a) of article 1, “public service contracts shall mean contracts for pecuniary interest concluded in writing between a service suppliers and a contracting authority” with list of the exclusion conditions, where clause (ix) states: “research and development service contracts other than those where the benefits accrue exclusively to the contracting authority for its use in the conduct of its own affairs, on condition that the service supplied is wholly remunerated by the contracting authority. 7” As such, we can see the difference in legal requirements between the EU and USA. Whether such procurement is a special form of government procurement, or whether research and development falls beyond the regulation of government procurement procedure, it nonetheless falls under a government budget for the encouragement of technology research and development, and said research and development “cannot be forecast and not to be directly used by the procurement agency8 ”. Under the legal system of the ROC, it is a policy tool for the encouragement of research and development in science and technology, and could be classified as government procurement, scientific research subsidy, and scientific research procurement. For scientific research subsidy, Article 9 of the Industrial Innovation Statue of the ROC 9 provides the legal origin. For example, the technology projects administered by the Ministry of Economic Affairs have been established under this law. Accordingly, the Regulation Governing the Subsidy of Research Institutions in Industrial Innovation and Research and Development Advocated by Ministry of Economic Affairs (hereinafter, “institutional scientific project regulation”), the “Ministry of Economic Affairs Regulation Governing the Subsidy and Supervision for Assistance of Industrial Innovation (hereinafter, “Industrial Scientific Project Regulation”), and the “Regulation Governing the Subsidy of Academic Institutions in Industrial Innovation and Research and Development Advocated by Ministry of Economic Affairs (hereinafter, “Academic Scientific Project Regulation” for subsidizing research and development in industrial technologies10. The result of research and development shall be released to the administering body as required by Article 6 of the Fundamental Science and Technology Act 11. In the ROC, the result of science and technology projects shall be transferred to Ministry of Economic Affairs 12, which is similar to the requirement in the EU. This could be exemplified by the EU example as mentioned13 that the appointing agency is not entitled to any interest of the result. Government procurement is a vital policy tool of the government in subsidizing research and development. According to Article 2 of the Government Procurement Act 14, procurement as referred to in this law covers the outsourcing of service. Article 7 (paragraph 3) of the same law also requires that, service shall cover professional service, research and development. As such, the government will naturally adopt the means of government procurement in promoting its policy for encouragement of research and development in science and technology. Procurement is different from subsidy. The former entails an “inspection for acceptance” procedure, and the end users of the latter may not be the government. This point is different from the EU Directive in procurement 15. The third kind of tool in the ROC for the encouragement of research and development is scientific research procurement. According to Article 6 (paragraph 4 16) of the Fundamental Science and Technology Act, public schools, public research agencies (institutions), non-profit organizations or groups receiving a government subsidy or appointed by the government as stated in paragraph 1, or public research agencies (institutions) proceed to procurement by preparing a budget for research and development in science and technology under law. We could analyze this issue from three aspects: 1. Public schools, public research agencies (institutions), non-profit organizations or groups may receive government subsidy as stated in paragraph 1, Article 6 of the Fundamental Science and Technology Act for procurement; 2. Public schools, public research agencies (institutions), non-profit organizations or groups may proceed to procurement at the appointment of the government as stated in paragraph 1, Article 6 of the Fundamental Science and Technology Act for procurement; and 3. Public research agencies (institutions) proceed to procurement by preparing a budget for research and development in science and technology under the law 17. In detail, this specific mode of scientific research procurement has its origin in Article 4 of the Government Procurement Act. The cause of the legislation for this article, dated May 27 1998, specified that: “When non-profit organizations or groups receive government subsidy for procurement, and if the amount of subsidy exceeds half of the total amount of procurement and the amount of subsidy is subject to announcement, such procurement shall be governed by this article and subject to the monitoring of the subsidizing agencies to prevent misconduct and corruption”. As such, the recipients of subsidies shall be governed by the Government Procurement Act after passing through the due procedure of subsidy if the amount of procurement meets the standard for announcement. The purpose is to prevent misconduct and corruption. Or it would not be necessary for the government to intervene, given the subsidy has been supported by its legal source in the determination of the recipients and the procedure for entering into subsidy agreement. Indeed, this is the specific feature of the Government Procurement Act of the ROC. The same principle applies to scientific research procurement in the ROC (excluded from the application of Article 4 of the Government Procurement Act), and not the exclusion of the application of the Government Procurement Act to the subsidy procedure 18. (II) Analysis of the dialogue in the process of government procurement, scientific research subsidy, and scientific research procurement III. The dialogue of government procurement In government procurement, the regulations governing an invitation to tender and decision of award require that the party for the design of the content of procurement shall be the same party in the bidding process, to avoid alleged manipulation of the bidding process. For example, Article 39 of the Government Procurement Act (paragraph 2 and 3) requires that, “The deputy agent or partners of contractor undertaking the project management shall not be the deputy agent or partners in the planning, design, construction, or of the suppliers”. Article 38 of the Enforcement Rules of the Government Procurement Act requires that, “In tender invitation, the entity shall require explicitly in the tender invitation documents that if any of the following applies to a specific bidder, such bidder shall not participate in the bidding process, as the recipient of the award, or subcontractors of the award, or assisting the bidder: 1. The contractor that provides the planning and design service shall proceed to procurement on the basis of the planning and design result”. As such, the purpose of the Government Procurement Act aims at the impartiality and neutrality of the planning of project “to prevent funneling of interest, helping each other in manipulation of the bidding process, and the bidder also assumes the role of judge during the bidding process 19”. Indeed, there is still the possibility for hearing opinions from outside the procurement entity in the procurement cases under the Government Procurement Act. The government procurement system of the ROC could be seen as a system featuring a mechanism for dialogue. The “Particulars for Implementation of Public Viewing of Documents of Public Work Tender Invitation” 20 (hereinafter, Public Viewing Particulars) could serve as an example for the introduction of user needs dialogue. The Public Viewing Particulars require that the documents for public viewing shall include the schematics of the project, the sample version of contract, sample of affidavit, sample of important notice to bidding, bill of quantities and specifications, and other documents related to the specific characters of the projects (Number 3 of the Public Viewing Particulars). The purpose of viewing is an invitation for the opinions from the contractors or the public, which will be compiled and forwarded to the organizer of the project for processing before making an announcement for invitation to tender (Number 8 of the Public Viewing Particulars). As such, public opinions could be presented at this stage as a response to the content of the aforementioned documents in addition to the contractors. There is no delineated scope of public opinion, and could cover the objective content of the procurement. However, the type of projects subject to public viewing are of a specific nature or the amount of the engineering projects shall be subject to an audit (Number 2 of the Public Viewing Particulars), which excludes the procurement of research and development. In addition, the purpose of the Public Viewing Particulars is the transparency and openness of the tender invitation process for public work. Through the public viewing of tender invitation documents, the opinions from the contractors or the public can be heard. This can help to upgrade the quality of the planning and design of public works projects and reduce possible disputes deriving from tender invitations or performance of contract (Number 2 of the Public Viewing Particulars). As such, the purpose of this arrangement is not aimed at the necessity of the procurement of engineering projects. The possibility of applying the concept of PPI to this system of public viewing could be considered. If we think of the content for public viewing as including the schematics of the projects, the subject matter of the purchase is very substantive. In the future, it is expected that the objective of public viewing shall include subject matters that do not yet have a concrete plan, but still the opinions of the user and producer would be properly heard. 1. The dialogue of scientific research subsidy In the domain of scientific research subsidy of the ROC, the topics for subsidy are selected through the top-down mode. According to Article 7 of the institutional scientific project regulation, “The MOEA shall invite the experts from the industry, government agencies (institutions), academic and research institutions to meetings for strategic planning of industrial innovation and research and development, and consider the opinions from these social sectors to design for the direction of industrial innovation and research and development in the future”. Article 11 of the same regulation also requires that, “The MOEA may unleash the urgent industrial technology development plan on industrial technology that needs to be launched urgently as approved by MOEA or Executive Yuan”. As such, the law has already included the opinions and thoughts from the industry, government, and the academeia in designing of the recipient of subsidy. As compared with the measures adopted in Finland, this regulation is different, and the practice of Finland aims at obtaining suggestions during the course of “procurement”. Or, we could say that the introduction of the PPI concept in the subsidy mechanism could help to broaden the scope of the legal adjustment. Under the scientific project subsidy mechanism currently in effect, if we do not cut into the problem from the aforementioned mode of topic selection for subsidy, the cooperative education activities in the course of the execution of the subsidy plan are emphasized in the subsidy of scientific project for the institutions, academia, and industry 21. Further to the requirements of the regulation in principle, a variety of options could be used for integrating the needs of the industry in order to achieve the goal of the dialogue for “encouraging” research and development and the needs of the industry in practice. Individual agreements can help to achieve this goal. Currently, there are requirements specified in the notice to applicants for scientific projects within the field of academia, which feature detailed requirements for our analysis. We could take the prototype important notice to applicants (general academic scientific project) and the requirements therein commonly used in the development of industrial technology projects by the academic circle. To encouraging close cooperation between schools and the industry and research institutions, the source of funding for the projects shall be incorporated with the fees for supporting bodies with the requirements for the relevant proportion of funding on the basis of the domain of the subject matter of the project topic and the geographic location of the schools 22. If we take a closer look at the important notice of the application for a local academic development of an industrial technology project (local academic technology project), we could see that the system design features the needs of local industry. A local academic technology project is positioned for the upgrading of the research and development of specific technologies of local industries and the advocacy of regional industrial development with regional characteristics. As such, the items eligible for subsidy are innovative, prospective or critical technologies required by the industry, or modes of operation, corporate management skills or innovative service advantageous for industrial development 23. As such, the applicants must attach the letter of intent issued by at least three enterprises in the application procedure, and can prove that the objective of the project for subsidy is to a certain extent meeting the needs of local industry. 2. The dialogue of scientific research procurement For scientific research procurement, the “Regulations Governing Procurements for Scientific and Technological Research and Development” (hereinafter, “Monitoring Regulation”) instituted at the authorization of the Fundamental Science and Technology Act serves as the legal source for the entities or procurement authority to undertake scientific research procurement. The Monitoring Regulation aims at monitoring and management and also provides the legal environment for dialogue for scientific research procurement. This could be the starting point for scientific research procurement innovation. According to Article 7 of the Monitoring Regulation, “Where necessary, public schools, public research agencies (institutions), non-profit organizations or groups may proceed to consultation with the suppliers respecting the works for procurement, the specifications of properties or service needs before entering into agreement on scientific research procurement”. As such, the requirements under the Monitoring Regulations allow flexibility for the procurement authority in pursuing scientific research procurement, as they can engage in consultation with the ‘suppliers’. The topics for consultation covered the works for procurements, the specification of properties or service needs. There is one thing that needs to be differentiated, the mechanism of “consultation”, which is different from the consultation under the Government Procurement Act. Consultation as specified in the Government Procurement Act is a kind of supplementary measure applicable only when no decision of award can be made to the best bid 24, or it is difficult to determine the best bid 25. In addition, only the provisions contained in the original documents labeled as amendable could fall into the scope of consultation 26. As such, the subject matter of procurement specified in the tender invitation document shall be the fundamental requirement of the procurement case. In other words, the procurement authority has already known the purchase needs, which is different from the tentative IPP scheme of Finland. The latter aims at the encouragement for the participation of the suppliers of the service and the users in the process of determining the specification for procurement, and the terms and conditions of procurement, which is an immediate concern of the government for solutions and the development of the state to tackle challenges in the future. In other words, the IPP scheme of Finland aims at providing a solution for the procurement authority and the content of procurement is uncertain or is difficult to define due to the rapid change in the environment. (III) Concluding remarks─ the subject matter of dialogue under the concept of PPI and the possibility of preventing misconduct and corruption The study of this section leads to a preliminary conclusion that the legal framework of ROC for scientific research subsidy, government procurement, and scientific research procurement provides the mechanism for possible dialogues between the subsidy providers/procurement authority and the recipients of subsidy/bidders. Even the public viewing system of government procurement could incorporate the channels for public opinions. These could serve as the starting points for the introduction of PPI concept. Yet, there are two points to be clarified and resolved if we compare the aforementioned legal system and the PPI concept of the EU or the implementation of the IPP scheme in Finland if we are to introduce related practices First of all, if we elect to understand the aforementioned mechanism of government procurement and scientific research procurement from the perspective of dialogue/participation mechanism, the participants in the dialogues are still the subsidy providers or procurement authority and the service/goods suppliers. It is not a dialogue directly involving the users of public service (at this point, we could see the eventual purpose of the result of research and development as a form of public service). However, the spirit of the system currently in effect aims at matching the users for an indirect dialogue through this mode to a certain extent. For example, the integration of the academic scientific research project with the intent of the general and local participating firms as a necessary condition in the application, which approximates the mode of dialogue with the users of public service in the future. This arrangement is made in consideration that the firms and the market are the closest entities in the process, and is incorporated as a part of the user needs (of course, if we equate the two parties, there is the risk that the firms orchestrate market needs or making profits as the primary goal). Secondly, the gravity of the law in the ROC rests with the prevention of misconduct and corruption. This is particularly the case in the Government Procurement Act. Therefore, the foremost issue of introducing the concept of government procurement innovation to the ROC, that is the design of a system that features a mechanism for the prevention of misconduct and corruption to avoid “manipulation of the bidding process”, is yet to be resolved, and will be discussed later in this paper. IV. Analysis of the introduction of PPI into the laws governing scientific research subsidy, government procurement, and scientific research procurement (I) Suggestions and thoughts for the incorporation of PPI into the legal framework of government procurement Article 39 of the Government Procurement Act and Article 38 of its implementation procedure have set forth strict criteria for the prevention of “participants who also act as judges”. Yet, the so-called “contractors providing planning and design service” do not apply to all contractors that have provided planning suggestions but particularly point to the contractors that have been appointed by the entity to engage in the planning, design, or working on the preparation of tender invitation documents 27. In practice, the parties concerned tended to “keep a distance from” the prospective bidders in order to avoid inadvertent violation of the law. As such, there is an exception in law that excludes situations of no conflict of interest or no unfair competition 28. If we are to introduce the concept of PPI into government procurement of science and technology research and development, additional provisions must be added to the aforementioned law to provide explicit legal grounds for practice, before the entities can possibly or willingly introduce dialogue between the supplier and the user. As for the public viewing system in existence, it provides the possibility of a similar setting under the same spirit. As explained, the subject matter for receiving public opinions is still the content of the plan, which is different from the dialogue between the “supplier” and the “users’ being encouraged in the procurement planning stage under IPP in Finland. In summary, suggestions for introducing PPI to government procurement practice of the ROC within the legal framework are detailed below: First, the Government Procurement Act primarily aims at the prevention of misconduct and corruption. The introduction of the PPI concept entails higher cost of legislation, which requires amendment to the procurement act to provide the legal grounds. At the same time, the reconciliation with the rule of avoidance of the conflict of interest current practiced in procurement and the settlement of relate issues shall also be taken in account. Second, it could be possible to include the procurement of professional service or research and development in the Public Viewing Particulars in order to introduce the concept of PPI. In so doing, we must consider the entrance barrier on the procurement of engineering projects previously covered by the Public Viewing Particulars. This may be designed for avoiding the incurrence of additional administrative cost and bolstering administrative efficiency (for example, the procurement of engineering projects not exceeding specific amount, the addition of the requirement of public viewing, may delay the procurement procedure and hamper competition). For the outsourcing of professional services or research and development, appropriate consideration should be taken. (II) Suggestions and thoughts for the incorporation of PPI into the legal framework of scientific research subsidy The legal sources for governing scientific research subsidy are Article 7 and Article 11 of the institutional scientific project regulation, as in the case of the Ministry of Economic Affairs, and the important notice to applicants for general and local academic technology projects in their design. First, Article 7 of the institutional scientific project regulation requires that, Ministry of Economic Affairs shall invite experts from the industry, government agencies (institutions), academia and research institutions to the strategic planning of industrial innovation and research and development and consider the opinions from these experts in order to plan for the direction of industrial innovation and research and development in the future. The planning of the direction for innovation research and development could be included as an item for the development of industrial technology and should be the direction expected by all. For example, the Ministry of Economic Affairs has held the “National Industrial Development Conference” in December 2012, and opened to public opinions on four reformations in three industries on the advocacy of adding value to industrial innovation, structuring of positive investment environment, and other common topics. This is similar to PPI, which may include the absorption of and communication with the opinions of the “users”. But there is one point of variation. This is a matter of the use of planning strategy, and is the planning of the overall industrial technology development direction from top-down. In PPI, this will be the direct dialogue between the suppliers of service/properties and the end users in order to encourage the innovative solutions for the procurement. They may be at different levels. Second, the principle for the subsidy of general and local academic scientific projects requires the funding in proportion of the participating units or the letter of intent signed by the owners of at least three enterprises, which could be stated as the requirement of cooperative education programs. Article 12 of the institutional scientific project regulation, Article 8 of the academic scientific project regulation, and Article 4 of the industrial scientific project regulation have the provisions for encouraging cooperation education and could serve as the legal source for such a purpose. The pilot project of procurement in Finland adopted the dialogue between the prospective suppliers of service providers and the end users at the planning stage of procurement. This may be defying the principle of the procurement act. In the ROC, the subsidy procedure and the procurement procure are governed by different sets of laws. As such, the restriction of the Government Procurement Act does not exist in the legal rules governing the subsidy procedure. As such, there is little concern over the violation of the law. However, we have to pay attention to Article 6 of the Fundamental Science and Technology Act 29 on the issue of the avoidance of interest in the entitlement and use of the result of scientific research under government subsidy, at the appointment of or funded by the government. In other words, the legal rules governing subsidy have not restricted the possibility of dialogue between the “supplier” and “end users” of the science technology research and development project at the preliminary planning stage. The substantive terms of requirement are stated in Article 12-1 of the “Ministry of Economic Affairs Regulation Governing the Entitlement and Use of The Result of Science and Technology Research and Development”, the procurement authority shall establish the management mechanism or regulations, or report to the Ministry for record on the avoidance of the conflict of interest or related disclosure of the result of research and development. Attention is required for possible violation against related requirements of the avoidance of the conflict of interest and disclosure of the procurement authority. But if we take a closer look at the Fundamental Science and Technology Act in the aspect of the avoidance of the conflict of interest, and compare with the dialogue between the procurer and the users at the planning stage, there may be room for legality. It is because the Fundamental Science and Technology Act requires only the entitlement and use of the result of research and development, which is the output of the project, and not the avoidance of the conflict of interest at the planning stage and implementation stage. This is the difference in the substance. Even though there is no dialogue after the outcome of the project, the performer may still have a conflict of interest under certain circumstances, which should also be considered. For example, the procurement authority declares its position on the opinions presented at the planning stage is indeed the suggestion of the result of research and development of the only party that has the technical capacity in the technology market that can undertake the research and development. In summary, suggestions for introducing PPI to government scientific research subsidy projects in the ROC within the legal framework are detailed below: First, we could incorporate relevant dialogue mechanisms at the project planning stage, in a timely fashion and in accordance with the requirements for encouraging cooperative education within the legal framework of scientific research subsidy administered by the Ministry of Economic Affairs currently in effect. Second, legal rules governing scientific research subsidy administered by the Ministry of Economic Affairs currently in effect do not restrict any dialogue between the recipient of subsidy (the so-called “supplier”) and the “end user” at the planning stage or in the future, but whether or not such an act will violate the requirements of relevant procurement authority in the avoidance of conflict of interest, deserves our attention. (III) Suggestions and thoughts for the incorporation of PPI into the legal framework scientific research procurement In the domain of scientific project procurement, Article 7 of the Monitoring Regulation sets forth that suppliers may involved in consultation on issues related to the works for procurement, specification of properties, or service needs. This provides the legal source for the trial use of the IPP scheme of Finland in the ROC, but we have to consider two things. First, the provision sets for the consultation with the supplier only, and it is, by and large, the dialogue mechanism only after the determination of the subject matter of procurement, which is different from the IPP of Finland. Also, the dialogue with the end user does not fall within the scope of such legal source, and, there is still room to define who could be positioned as the “end user”. Yet, it is two sides of the same coin. There is a legal framework in place without detailed requirement. As such, the procurement authority may design the procedure in fuller detail in this space as needed. Finally, the scope of scientific research procurement in the ROC is not as broad as the subsidy cases (refer to the definition of scientific research procurement above). As such, the majority of scientific research procurement is already at the cooperative education stage under individual subsidy or appointment of the government (except the work under the scientific research and development budget prepared by the public research institutions). If we introduce the concept of PPI into the scientific research procurement stage, the content and the scope have already fallen into the framework of the previous subsidy plan, and there is little room for the incorporation of dialogue and opinions. In summary, the suggestions for introducing PPI to scientific research procurement of the ROC within the legal framework are detailed below: First, the Monitoring Regulation of scientific research procurement provides the mechanism for consultation but does not define the subject matter of consultation in procurement. As such, the scope for hearing opinions is limited. Further, the dialogue with the users has not been covered. The overall implementation procedure requires refinement for proper enforcement. Second, the scope of scientific research procurement is limited to the procurement under an individual subsidy program or at the appointment of the government, and falls within the scope of the content for the previous subsidy program or the program at the appointment of the government in principle. As such, the effect of introducing PPI is limited. V. Conclusion – A Discussion on Introducing the PPI into Science and Technology Projects and Suggestions for Legislation within the ROC The above are overall observations on the analysis of the introduction of PPI to scientific research subsidy, government procurement, and scientific research procurement in the ROC. In the “Issue of dialogue for innovation”, we should consider to start with scientific research subsidy. The primary reason is that there is room within the legal framework under the Monitoring Regulations governing scientific research procurement, but in practice, more substantive terms could be developed. However, the scope of the legal framework for the applicability of scientific research procurement is confined to the procurement made under subsidy or at the appointment of the government on specific programs. The effect of trial running PPI is very little under the framework of subsidy or appointment by the government. Finally, the feasibility of introducing PPI to the scientific research projects of the ROC, which is the “subsidy innovation issue”, is analyzed below: First, the legality of using scientific development fund to subsidize other government agencies: Article 5 of the “National Science and Technology Development Fund Management and Utilization Regulation of Executive Yuan” sets forth the use of the fund, including “expenditure on the advocacy of overall technology development of the nation”, “expenditure on the improvement of the research and development environment for science and technology”. As such, the introduction of the trial run of IPP schemes in Finland would comply with the aforementioned provisions. Second, the legality of subsidizing the public sector by advocating science and technology research and development, like the Department of Industrial Technology at the Ministry of Economic Affairs in the future: reference could be taken from Article 9 of the Ministry of Economic and Energy Affairs Articles of Association (Draft) under which the Department of Industrial Technology shall administer, “1. Strategic planning and implementation in technology under the jurisdiction of the ministry”, and the “planning of technology funding resources, and the establishment of implementation system and evaluation system”. As such, the model of the IPP scheme of Finland is not compatible with the authority and function of the Department of Industrial Technology. In other words, the Department of Industrial Technology shall not perform the function of subsidizing/advocating the duties of procurement innovation of other government agencies, but can introduce the concept of PPI for trial running within its scope of legal framework (e.g., scientific research procurement). Third, the issue of outsourcing for survey of market needs by the public sector on the applicability of the Monitoring Regulation. If the work for outsourcing is an item of work under previous subsidy or work at the appointment of the government, and the fund of the project for procurement is regulated by the Monitoring Regulations. However, for survey of market needs purely planned for subsidy by the entity or required by the procurement cases, they fall within the category of general procurement of service and the Government Procurement Act shall be applicable. In sum, the PPI concept under the FP7 of the EU has been subject to trial run through the IPP scheme of Finland. In Finland, the evaluation mechanism has not yet been fully established. Yet, such attempt to provide a solution for specific subject matter of procurement for the country that faces the rapid changing objective environment through the absorption of dialogue and opinions for innovative solutions is new in the world, and could be considered for adoption within the ROC that has similar challenges in the objective environment. As such, we could start with scientific research procurement. The evaluation of the result is promising; this could be incorporated into the design of the mechanism for scientific research subsidy. For the scope governed by the Government Procurement Act, it entails high cost for amendment, and should be left a subsequent choice for review and planning. 1.TEKES Homepage, http://www.tekes.fi/en/community/Home/351/Home/473 (last visited June 15, 2013). 2.The IPP scheme is the response of Finland to FP7 of the EU in proposing the Public Procurement of Innovative Solutions, PPI. In this paper, PPI and IPP share the same concept while the latter is the substantive name of the pilot project in Finland. See Huang Huei-Hsiang, “International Practice and Legal Analysis of the Advocacy of Government Procurement Innovation – a case study on IPP of TEKES, Finland”, Science and Technology Law Review, Vol. 25 No. 10. PP. 27-45 (2013), by. 3.Pre-commercial procurement, PCP, is the procurement of the government for creating a market and appeals mainly to the service supplier with emphasis the difference from the dialogue between the users and the suppliers. 4.Article 1 of the Government Procurement Act, “This law is instituted for the establishment of a government procurement system to the extent of setting up a fair and transparent procurement procedure, upgrade the efficiency and function of procurement, and guarantee the quality of procurement”. Although this law is instituted for achieving the objective of upgrading procurement efficiency and function, and guarantee of procurement quality, the procedure of the Government Procurement Act aims at keeping distance with the prospective contractors in the procurement process to avoid possible allegation of manipulation of the bidding process, monopoly of the tender, and profit seeking. 5.Federal Acquisition Regulation 2.101, “Acquisition’ means the acquiring by contract with appropriated funds of supplies or services (including construction) by and for the use of the Federal Government through purchase or lease, whether the supplies or services are already in existence or must be created, developed, demonstrated, and evaluated.” FAR Home Page, https://www.acquisition.gov/far/current/html/Subpart%202_1.html#wp1145507 (last visited June 15, 2013). 6.Federal Acquisition Regulation 35.002, “The primary purpose of contracted R&D programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary to achieve agency and national goals. Unlike contracts for supplies and services, most R&D contracts are directed toward objectives for which the work or methods cannot be precisely described in advance. It is difficult to judge the probabilities of success or required effort for technical approaches, some of which offer little or no early assurance of full success. The contracting process shall be used to encourage the best sources from the scientific and industrial community to become involved in the program and must provide an environment in which the work can be pursued with reasonable flexibility and minimum administrative burden.” FAR Home Page, https://www.acquisition.gov/far/current/html/FARTOCP35.html#wp223483 (last visited June 15, 2013). 7.“For the purposes of this Directive: (a) public service contracts shall mean contracts for pecuniary interest concluded in writing between a service provider and a contracting authority, to the exclusion of:…(ix) research and development service contracts other than those where the benefits accrue exclusively to the contracting authority for its use in the conduct of its own affairs, on condition that the service provided is wholly remunerated by the contracting authority;” Council Directive 92/50/EEC, art. 1, 1992 O.J. (L 209) 1,3. 8.In “Critique of Scientific Research Procurement after the Amendment to Article VI of the Fundamental Science and Technology Act ”, in Science and Technology Law, Vol. 24, No. 10, PP, 29-32 (2012), by Chen Shih-Chieh. 9.Article 9 of the Industrial Innovation Statue, “Competent authorities at the central government may advocate the following in the form of subsidy or supervision: I. Encouragement of industrial innovation or research and development. II. Supply or industrial technology and supervision of industrial upgrading. III. Encouragement for the establishment of innovation or research and development center in the enterprises. IV. Assistance in the establishment of innovation or research and development institutions. V. Encouragement of cooperation among the industry, academic circle, and research institutions. VI. Encouragement of the input to schools by enterprises for the training and development of talents. VII. Augmentation of human resources in the industry. VIII. Assistance in the innovation of regional industries. IX. Any others that help to encourage industrial innovation or research and development. The recipients of the aforementioned subsidy or supervision, the qualification requirements, criteria for screening, application procedure, authority for approval, and other related rules and regulation shall be established by respective competent authority of the central government”. 10.For example, Article 4 of the academic scientific project regulation, “The MOEA shall subsidize academic institutions to perform the following research and development for the advocacy of industrial development and reinforcement of innovation capacity for the country…” 11.Article 6 of the Fundamental Science and Technology Act , “The parties for awarding science and technology research and development subsidized, appointed, funded by the government, or under a budget prepared by public research agencies (institutions) on science and technology research and development shall be determined by evaluation or review process with justifiable reasons for the evaluation and review. The resulting intellectual property rights and result in whole or in part shall be entitled to the pursuer of research and development or authorization for use irrespective of the restriction of state-owned properties”. 12.Article 6 of the Ministry of Economic Affairs Regulation Governing the Entitlement and Utilization of Science and Technology Research and Development Result, “The result of science and technology project of the pursuer shall be entitled to the pursuer unless otherwise specified in This Regulation”. 13.In the EU, the provision of “The procurement authority shall be responsible for all the expenses incurred from the service supply and the benefit so generated shall be owned by the procurement authority for its needs in operation” served as an exception of contracted service of research and development. In other words, the interpretation is inversely made to the extent that contracted service of research and development in the EU is not entitled to the procurement authority. 14.Article 2 of the Government Procurement Act, “Procurement as referred in this law shall be job order for work, the purchase, making to order, leasing of properties and the contract for service or employment”. Article 7 of the same law, “Work as referred to in this law shall be act of building, addition, renovation, remodeling, demolition of structures and equipment accessory to the structures above and below ground level, and the act to change the natural environment, including building, civil engineering Hydraulic engineering, water work, environment, transportation, machinery, electric, chemical engineering and any other engineering project recognized by the competent authority. Properties as referred to in this law are items(except fresh agricultural or aquacultural products), materials, equipment, machinery and other movables, real properties, rights, and other properties recognized by the competent authority. Service as referred to in this law shall be professional service, technical service, information service, research and development, corporate management, repair and maintenance, training, labor, and other forms of service recognized by the competent authority. Where the procurement may involve two or more of the aforementioned content, which made it difficult to identify the very nature, the content accounted for a larger proportion of the budget for total work shall stand”. 15.Op. Cit, Note 13. 16.Article 6 – Paragraph 4 of the Fundamental Science and Technology Act , “the Government Procurement Act shall not be applicable to public schools, public research agencies (institutions), non-profit organizations or groups receiving government subsidy or assignment, or procurement of public research agencies (institutions) under a budget of science and technology research and development prepared in compliance with applicable law unless otherwise specified in a treaty or agreement binding the ROC and a third country. Yet, they are subject to the monitoring of the subsidizing, assigning, or the competent authority. The regulation for monitoring and management shall be established by the competent authority in the central government”. 17.Op. Cit. Note 8, PP36-37. 18.Table of “Research and Development Projects” governed by the “Government Procurement Act” under Public Construction Commission, Executive Yuan Letter Chi-Tzi No. 89009844. The Government Procurement Act shall not be applicable to the selection of the recipients of subsidy. 19.The cause of legislation for Article 39 of the Government Procurement Act dated May 27 2998, “II. Paragraph II and III explicitly state that contractors may act on behalf of the entity in project management, and shall be in specific relation with the contractors responsible for the planning, design, construction of the project to avoid funneling of interest, cover up each other, and acting as a participant and the judge at the same time”. 20.Particulars for Public Viewing of Tender Invitation Documents of Public Works, at http://lawweb.pcc.gov.tw/LawContentDetails.aspx?id=FL029347&KeyWordHL=&StyleType=1 (last browsing date: 2013/6/15) 21.Article 12 of the Regulation Governing the Subsidy of Research Institutions in Industrial Innovation and Research and Development Advocated by the Ministry of Economic Affairs, “The MOEA or its functionaries shall encourage research institutions to introduce technologies, joint ventures in the development and participation in the pursuit of technology projects through interdisciplinary or cross-function cooperation for the effective integration of domestic and foreign research and development resources and capacity, the assistance of the upgrading of traditional industries, or advocacy of the development of knowledge service for the best interest of the industry”. Article 8 of the Regulation Governing the Subsidy of Academic Institutions in Industrial Innovation and Research and Development Advocated by the Ministry of Economic Affairs , “The MOEA shall request the applicants of academic technology projects to invite the joint participation of research institutions or companies and execute the academic technology project in interdisciplinary or cross-function mode of operation for the effective integration of research and development resources and capacities at home and abroad and create the optimized result in industry”. Article 4 of the Ministry of Economic Affairs Regulation Governing the Subsidy and Supervision for Assistance of Industrial Innovation, “The MOEA or its functionaries may provide subsidy for the following industrial innovative activities:… IV. Encouragement for joint venture among the industry, academia, and research institutions”. 22.Refer to important notice of application for general type of projects, IV. Types of subsidies for general academic scientific research projects. 23.Refer to important notice of application for local type of projects, III. The positioning, nature, and subsidy for local academic scientific research projects. 24.Article 55 of the Government Procurement Act, “Entities taking minimum offer for procurement and have been approved by the senior authority and announced in the notice of tender and the tender invitation documents and cannot determine the award pursuant to the requirements or preceding two articles may proceed to consultation”. 25.Article 56 of the Government Procurement Act, “ …if the evaluation result cannot determine the best bid on the basis of the decision of the head of entity or more than half of the members of the evaluation committee, proceed to consultation and comprehensive evaluation for determining the best bid”. 26.Article 57 of the Government Procurement Act, “Entity elects to proceed to consultation in accordance to the requirements specified in the previous two articles shall comply with the following principles: … III. The content of the original tender invitation documents to be revised shall be highlighted before proceeding to consultation”. 27.Paragraph 1, Article 39 of the Government Procurement Act, “Entities may assign the duties of project management in planning, design, supply, or performance of contract to a contractor in procurement under this law when making procurement”. 28.Paragraph 2, Article 38 of the Government Procurement Act Implementation Procedure, “Subsequent procurement procedure shall not be applicable to situations specified in I and II of the previous section if there is no alleged conflict of interest or unfair competition and at the approval of the entity”. 29.Paragraph 3, Article 6 of Fundamental Science and Technology Act , “The Executive Yuan shall coordinate and regulate the entitlement and utilization of the intellectual property right and result as mentioned in preceding two sections under the principle of equity and effectiveness, with reference to the proportion and contribution of capital and service, the nature, potential of utilization, social benefit, national security and the effect on the market of the result of science and technology research and development, and on the basis of its purpose, necessary condition, duration, scope, proportion in whole or in part, registration, management, distribution of incomes, avoidance of conflict of interest and the disclosure of related information, the intervention of the subsidizing agent in authorization of a third party, or procedure for nationalization. Respective competent authority at different level shall establish relevant legal rules for such purpose”.

The Key Elements for Data Intermediaries to Deliver Their Promise

The Key Elements for Data Intermediaries to Deliver Their Promise 2022/12/13   As human history enters the era of data economy, data has become the new oil. It feeds artificial intelligence algorithms that are disrupting how advertising, healthcare, transportation, insurance, and many other industries work. The excitement of having data as a key production input lies in the fact that it is a non-rivalrous good that does not diminish by consumption.[1] However, the fact that people are reluctant in sharing data due to privacy and trade secrets considerations has been preventing countries to realize the full value of data. [2]   To release more data, policymakers and researchers have been exploring ways to overcome the trust dilemma. Of all the discussions, data intermediaries have become a major solution that governments are turning to. This article gives an overview of relevant policy developments concerning data intermediaries and a preliminary analysis of the key elements that policymakers should consider for data intermediaries to function well. I. Policy and Legal developments concerning data intermediaries   In order to unlock data’s full value, many countries have started to focus on data intermediaries. For example, in 2021, the UK’s Department for Digital, Culture, Media and Sport (DCMS) commissioned the Centre for Data Ethics and Innovation (CDEI) to publish a report on data intermediaries[3] , in response to the 2020 National Data Strategy.[4] In 2020, the European Commission published its draft Data Governance Act (DGA)[5] , which aims to build up trust in data intermediaries and data altruism organizations, in response to the 2020 European Strategy for Data.[6] The act was adopted and approved in mid-2022 by the Parliament and Council; and will apply from 24 September 2023.[7] The Japanese government has also promoted the establishment of data intermediaries since 2019, publishing guidance to establish regulations on data trust and data banks.[8] II. Key considerations for designing effective data intermediary policy 1.Evaluate which type of data intermediary works best in the targeted country   From CDEI’s report on data intermediaries and the confusion in DGA’s various versions of data intermediary’s definition, one could tell that there are many forms of data intermediaries. In fact, there are at least eight types of data intermediaries, including personal information management systems (PIMS), data custodians, data exchanges, industrial data platforms, data collaboratives, trusted third parties, data cooperatives, and data trusts.[9] Each type of data intermediary was designed to combat data-sharing issues in specific countries, cultures, and scenarios. Hence, policymakers need to evaluate which type of data intermediary is more suitable for their society and market culture, before investing more resources to promote them.   For example, data trust came from the concept of trust—a trustee managing a trustor’s property rights on behalf of his interest. This practice emerged in the middle ages in England and has since developed into case law.[10] Thus, the idea of data trust is easily understood and trusted by the British people and companies. As a result, British people are more willing to believe that data trusts will manage their data on their behalf in their best interest and share their valuable data, compared to countries without a strong legal history of trusts. With more people sharing their data, trusts would have more bargaining power to negotiate contract terms that are more beneficial to data subjects than what individual data owners could have achieved. However, this model would not necessarily work for other countries without a strong foundation of trust law. 2.Quality signals required to build trust: A government certificate system can help overcome the lemon market problem   The basis of trust in data intermediaries depends largely on whether the service provider is really neutral in its actions and does not reuse or sell off other parties’ data in secret. However, without a suitable way to signal their service quality, the market would end up with less high-quality service, as consumers would be reluctant to pay for higher-priced service that is more secure and trustworthy when they have no means to verify the exact quality.[11] This lemon market problem could only be solved by a certificate system established by actors that consumers trust, which in most cases is the government.   The EU government clearly grasped this issue as a major obstacle to the encouragement of trust in data intermediaries and thus tackles it with a government register and verification system. According to the Data Government Act, data intermediation services providers who intend to provide services are required to notify the competent authority with information on their legal status, form, ownership structure, relevant subsidiaries, address, public website, contact details, the type of service they intend to provide, the estimated start date of activities…etc. This information would be provided on a website for consumers to review. In addition, they can request the competent authority to confirm their legal compliance status, which would in turn verify them as reliable entities that can use the ‘data intermediation services provider recognised in the Union’ label. 3.Overcoming trust issues with technology that self-enforces privacy: privacy-enhancing technologies (PETs)   Even if there are verified data intermediation services available, businesses and consumers might still be reluctant to trust human organizations. A way to boost trust is to adopt technologies that self-enforces privacy. A real-world example is OpenSAFELY, a data intermediary implementing privacy-enhancing technologies (PETs) to provide health data sharing in a secure environment. Through a federated analytics system, researchers are able to conduct research with large volumes of healthcare data, without the ability to observe any data directly. Under such protection, UK NHS is willing to share its data for research purposes. The accuracy and timeliness of such research have provided key insights to inform the UK government in decision-making during the COVID-19 pandemic.   With the benefits it can bring, unsurprisingly, PETs-related policies have become quite popular around the globe. In June 2022, Singapore launched its Digital Trust Centre (DTC) for accelerating PETs development and also signed a Memorandum of Understanding with the International Centre of Expertise of Montreal for the Advancement of Artificial Intelligence (CEIMIA) to collaborate on PETs.[12] On September 7th, 2022, the UK Information Commissioners’ Office (ICO) published draft guidance on PETs.[13] Moreover, the U.K. and U.S. governments are collaborating on PETs prize challenges, announcing the first phase winners on November 10th, 2022.[14] We could reasonably predict that more PETs-related policies would emerge in the coming year. Reference: [1] Yan Carrière-Swallow and Vikram Haksar, The Economics of Data, IMFBlog (Sept. 23, 2019), https://blogs.imf.org/2019/09/23/the-economics-of-data/#:~:text=Data%20has%20become%20a%20key,including%20oil%2C%20in%20important%20ways (last visited July 22, 2022). [2] Frontier Economics, Increasing access to data across the economy: Report prepared for the Department for Digital, Culture, Media, and Sport (2021), https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/974532/Frontier-access_to_data_report-26-03-2021.pdf (last visited July 22, 2022). [3] The Centre for Data Ethics and Innovation (CDEI), Unlocking the value of data: Exploring the role of data intermediaries (2021), https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1004925/Data_intermediaries_-_accessible_version.pdf (last visited June 17, 2022). [4] Please refer to the guidelines for the selection of sponsors of the 2022 Social Innovation Summit: https://www.gov.uk/government/publications/uk-national-data-strategy/national-data-strategy(last visited June 17, 2022). [5] Regulation of the European Parliament and of the Council on European data governance and amending Regulation (EU) 2018/1724 (Data Governance Act), 2020/0340 (COD) final (May 4, 2022). [6] Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and The Committee of the Regions— A European strategy for data, COM/2020/66 final (Feb 19, 2020). [7] Proposal for a Regulation on European Data Governance, European Parliament Legislative Train Schedule, https://www.europarl.europa.eu/legislative-train/theme-a-europe-fit-for-the-digital-age/file-data-governance-act(last visited Aug 17, 2022). [8] 周晨蕙,〈日本資訊信託功能認定指引第二版〉,科技法律研究所,https://stli.iii.org.tw/article-detail.aspx?no=67&tp=5&d=8422(最後瀏覽日期︰2022/05/30)。 [9] CDEI, supra note 3. [10] Ada Lovelace Institute, Exploring legal mechanisms for data stewardship (2021), 30~31,https://www.adalovelaceinstitute.org/wp-content/uploads/2021/03/Legal-mechanisms-for-data-stewardship_report_Ada_AI-Council-2.pdf (last visited Aug 17, 2022). [11] George A. Akerlof, The Market for "Lemons": Quality Uncertainty and the Market Mechanism, THE QUARTERLY JOURNAL OF ECONOMICS, 84(3), 488-500 (1970). [12] IMDA, MOU Signing Between IMDA and CEIMIA is a Step Forward in Cross-border Collaboration on Privacy Enhancing Technology (PET) (2022),https://www.imda.gov.sg/-/media/Imda/Files/News-and-Events/Media-Room/Media-Releases/2022/06/MOU-bet-IMDA-and-CEIMIA---ATxSG-1-Jun-2022.pdf (last visited Nov. 28, 2022). [13] ICO publishes guidance on privacy enhancing technologies, ICO, https://ico.org.uk/about-the-ico/media-centre/news-and-blogs/2022/09/ico-publishes-guidance-on-privacy-enhancing-technologies/ (last visited Nov. 27, 2022). [14] U.K. and U.S. governments collaborate on prize challenges to accelerate development and adoption of privacy-enhancing technologies, GOV.UK, https://www.gov.uk/government/news/uk-and-us-governments-collaborate-on-prize-challenges-to-accelerate-development-and-adoption-of-privacy-enhancing-technologies (last visited Nov. 28, 2022); Winners Announced in First Phase of UK-US Privacy-Enhancing Technologies Prize Challenges, NIST, https://www.nist.gov/news-events/news/2022/11/winners-announced-first-phase-uk-us-privacy-enhancing-technologies-prize (last visited Nov. 28, 2022).

Impact of Government Organizational Reform to Research Legal System and Response Thereto (2) – Observation of the Swiss Research Innovation System

Impact of Government Organizational Reform to Research Legal System and Response Thereto (2) – Observation of the Swiss Research Innovation System I. Foreword   Switzerland is a landlocked country situated in Central Europe, spanning an area of 41,000 km2, where the Alps occupy 60% of the territory, while it owns little cultivated land and poor natural resources. In 2011, its population was about 7,950,000 persons[1]. Since the Swiss Federal was founded, it has been adhering to a diplomatic policy claiming neutrality and peace, and therefore, it is one of the safest and most stable countries in the world. Switzerland is famous for its high-quality education and high-level technological development and is very competitive in biomedicine, chemical engineering, electronics and metal industries in the international market. As a small country with poor resources, the Swiss have learnt to drive their economic and social development through education, R&D and innovation a very long time ago. Some renowned enterprises, including Nestle, Novartis and Roche, are all based in Switzerland. Meanwhile, a lot of creative small-sized and medium-sized enterprises based in Switzerland are dedicated to supporting the export-orientation economy in Switzerland.   Switzerland has the strongest economic strength and plentiful innovation energy. Its patent applications, publication of essay, frequencies of quotation and private enterprises’ innovation performance are remarkable all over the world. According to the Global Competitiveness Report released by the World Economic Forum (WEF), Switzerland has ranked first among the most competitive countries in the world for four years consecutively since 2009[2]. Meanwhile, according to the Global Innovation Index (GII) released by INSEAD and the World Intellectual Property Organization (WIPO) jointly, Switzerland has also ranked first in 2011 and 2012 consecutively[3]. Obviously, Switzerland has led the other countries in the world in innovation development and economic strength. Therefore, when studying the R&D incentives and boosting the industrial innovation, we might benefit from the experience of Switzerland to help boost the relevant mechanism in Taiwan.   Taiwan’s government organization reform has been launched officially and boosted step by step since 2012. In the future, the National Science Council will be reformed into the “Ministry of Science and Technology”, and the Ministry of Economic Affairs into the “Ministry of Economy and Energy”, and the Department of Industrial Development into the “Department of Industry and Technology”. Therefore, Taiwan’s technology administrative system will be changed materially. Under the new government organizational framework, how Taiwan’s technology R&D and industrial innovation system divide work and coordinate operations to boost the continuous economic growth in Taiwan will be the first priority without doubt. Support of innovation policies is critical to promotion of continuous economic growth. The Swiss Government supports technological research and innovation via various organizations and institutions effectively. In recent years, it has achieved outstanding performance in economy, education and innovation. Therefore, we herein study the functions and orientation of the competent authorities dedicated to boosting research and innovation in Switzerland, and observe its policies and legal system applied to boost the national R&D in order to provide the reference for the functions and orientation of the competent authorities dedicated to boosting R&D and industrial innovation in Taiwan. II. Overview of Swiss Federal Technology Laws and Technology Administrative System   Swiss national administrative organization is subject to the council system. The Swiss Federal Council is the national supreme administrative authority, consisting of 7 members elected from the Federal Assembly and dedicated to governing a Federal Government department respectively. Switzerland is a federal country consisting of various cantons that have their own constitutions, councils and governments, respectively, entitled to a high degree of independence.   Article 64 of the Swiss Federal Constitution[4] requires that the federal government support research and innovation. The “Research and Innovation Promotion Act” (RIPA)[5] is dedicated to fulfilling the requirements provided in Article 64 of the Constitution. Article 1 of the RIPA[6] expressly states that the Act is enacted for the following three purposes: 1. Promoting the scientific research and science-based innovation and supporting evaluation, promotion and utilization of research results; 2. Overseeing the cooperation between research institutions, and intervening when necessary; 3. Ensuring that the government funding in research and innovation is utilized effectively. Article 4 of the RIPA provides that the Act shall apply to the research institutions dedicated to innovation R&D and higher education institutions which accept the government funding, and may serve to be the merit for establishment of various institutions dedicated to boosting scientific research, e.g., the National Science Foundation and Commission of Technology & Innovation (CTI). Meanwhile, the Act also provides detailed requirements about the method, mode and restriction of the government funding.   According to the RIPA amended in 2011, the Swiss Federal Government’s responsibility for promoting innovation policies has been extended from “promotion of technology R&D” to “unification of education, research and innovation management”, making the Swiss national industrial innovation framework more well-founded and consistent[8] . Therefore, upon the government organization reform of Switzerland in 2013, most of the competent authorities dedicated to technology in Swiss have been consolidated into the Federal Department of Economic Affairs, Education and Research.   Under the framework, the Swiss Federal Government assigned higher education, job training, basic scientific research and innovation to the State Secretariat for Education, Research and Innovation (SERI), while the Commission of Technology & Innovation (CTI) was responsible for boosting the R&D of application scientific technology and industrial technology and cooperation between the industries and academy. The two authorities are directly subordinate to the Federal Department of Economic Affairs, Education and Research (EAER). The Swiss Science and Technology Council (SSTC), subordinate to the SERI is an advisory entity dedicated to Swiss technology policies and responsible for providing the Swiss Federal Government and canton governments with the advice and suggestion on scientific, education and technology innovation policies. The Swiss National Science Foundation (SNSF) is an entity dedicated to boosting the basic scientific R&D, known as the two major funding entities together with CTI for Swiss technology R&D. The organizations, duties, functions and operations of certain important entities in the Swiss innovation system are introduced as following. Date source: Swiss Federal Department of Economic Affairs, Education and Research official website Fig. 1 Swiss Innovation Framework Dedicated to Boosting Industries-Swiss Federal Economic, Education and Research Organizational Chart 1. State Secretariat of Education, Research and Innovation (SERI)   SERI is subordinate to the Department of Economic Affairs, Education and Research, and is a department of the Swiss Federal Government dedicated to managing research and innovation. Upon enforcement of the new governmental organization act as of January 1, 2013, SERI was established after the merger of the State Secretariat for Education and Research, initially subordinate to Ministry of Interior, and the Federal Office for Professional Education and Technology (OEPT), initially subordinated to Ministry of Economic Affairs. For the time being, it governs the education, research and innovation (ERI). The transformation not only integrated the management of Swiss innovation system but also unified the orientations toward which the research and innovation policy should be boosted.   SERI’s core missions include “enactment of national technology policies”, “coordination of research activities conducted by higher education institutions, ETH, and other entities of the Federal Government in charge of various areas as energy, environment, traffic and health, and integration of research activities conducted by various government entities and allocation of education, research and innovation resources. Its functions also extend to funding the Swiss National Science Foundation (SNSF) to enable SNSF to subsidize the basic scientific research. Meanwhile, the international cooperation projects for promotion of or participation in research & innovation activities are also handled by SERI to ensure that Switzerland maintains its innovation strength in Europe and the world.   The Swiss Science and Technology Council (SSTC) is subordinate to SERI, and also the advisory unit dedicated to Swiss technology policies, according to Article 5a of RIPA[9]. The SSTC is responsible for providing the Swiss Federal Government and canton governments with advice and suggestion about science, education and innovation policies. It consists of the members elected from the Swiss Federal Council, and a chairman is elected among the members. 2. Swiss National Science Foundation (SNSF)   The Swiss National Science Foundation (SNSF) is one of the most important institutions dedicated to funding research, responsible for promoting the academic research related to basic science. It supports about 8,500 scientists each year. Its core missions cover funding as incentives for basic scientific research. It grants more than CHF70 million each year. Nevertheless, the application science R&D, in principle, does not fall in the scope of funding by the SNSF. The Foundation allocates the public research fund under the competitive funding system and thereby maintains its irreplaceable identity, contributing to continuous output of high quality in Switzerland.   With the support from the Swiss Federal Government, the SNSF was established in 1952. In order to ensure independence of research, it was planned as a private institution when it was established[10]. Though the funding is provided by SERI, the SNSF still has a high degree of independence when performing its functions. The R&D funding granted by the SNSF may be categorized into the funding to free basic research, specific theme-oriented research, and international cooperative technology R&D, and the free basic research is granted the largest funding. The SNSF consists of Foundation Council, National Research Council and Research Commission[11]. Data source: prepared by the Study Fig. 2  Swiss National Science Foundation Organizational Chart (1) Foundation Council   The Foundation Council is the supreme body of the SNSF[12], which is primarily responsible for making important decisions, deciding the role to be played by the SNSF in the Swiss research system, and ensuring SNSF’s compliance with the purpose for which it was founded. The Foundation Council consists of the members elected from the representatives from important research institutions, universities and industries in Swiss, as well as the government representatives nominated by the Swiss Federal Council. According to the articles of association of the SNSF[13], each member’s term of office should be 4 years, and the members shall be no more than 50 persons. The Foundation Council also governs the Executive Committee of the Foundation Council consisting of 15 Foundation members. The Committee carries out the mission including selection of National Research Council members and review of the Foundation budget. (2) National Research Council   The National Research Council is responsible for reviewing the applications for funding and deciding whether the funding should be granted. It consists of no more than 100 members, mostly researchers in universities and categorized, in four groups by major[14], namely, 1. Humanities and Social Sciences; 2. Math, Natural Science and Engineering; 3. Biology and Medical Science; and 4. National Research Programs (NRPs)and National Centers of Competence in Research (NCCRs). The NRPs and NCCRs are both limited to specific theme-oriented research plans. The funding will continue for 4~5years, amounting to CHF5 million~CHF20 million[15]. The specific theme-oriented research is applicable to non-academic entities, aiming at knowledge and technology transfer, and promotion and application of research results. The four groups evaluate and review the applications and authorize the funding amount.   Meanwhile, the representative members from each group form the Presiding Board dedicated to supervising and coordinating the operations of the National Research Council, and advising the Foundation Council about scientific policies, reviewing defined funding policies, funding model and funding plan, and allocating funding by major. (3) Research Commissions   Research Commissions are established in various higher education research institutions. They serve as the contact bridge between higher education academic institutions and the SNSF. The research commission of a university is responsible for evaluating the application submitted by any researcher in the university in terms of the school conditions, e.g., the school’s basic research facilities and human resource policies, and providing advice in the process of application. Meanwhile, in order to encourage young scholars to attend research activities, the research committee may grant scholarships to PhD students and post-doctor research[16]. ~to be continued~ [1] SWISS FEDERAL STATISTICS OFFICE, Switzerland's population 2011 (2012), http://www.bfs.admin.ch/bfs/portal/en/index/news/publikationen.Document.163772.pdf (last visited Jun. 1, 2013). [2] WORLD ECONOMIC FORUM [WEF], The Global Competiveness Report 2012-2013 (2012), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2012-13.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2011-2012 (2011), http://www3.weforum.org/docs/WEF_GCR_Report_2011-12.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2010-2011 (2010), http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2010-11.pdf (last visited Jun. 1, 2013); WEF, The Global Competiveness Report 2009-2010 (2009),. http://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2009-10.pdf (last visited Jun. 1, 2013). [3] INSEAD, The Global Innovation Index 2012 Report (2012), http://www.globalinnovationindex.org/gii/GII%202012%20Report.pdf (last visited Jun. 1, 2013); INSEAD, The Global Innovation Index 2011 Report (2011), http://www.wipo.int/freepublications/en/economics/gii/gii_2011.pdf (last visited Jun. 1, 2013). [4] SR 101 Art. 64: “Der Bund fördert die wissenschaftliche Forschung und die Innovation.” [5] Forschungs- und Innovationsförderungsgesetz, vom 7. Oktober 1983 (Stand am 1. Januar 2013). For the full text, please see www.admin.ch/ch/d/sr/4/420.1.de.pdf (last visited Jun. 3, 2013). [6] Id. [7] Id. [8] CTI, CTI Multi-year Program 2013-2016 7(2012), available at http://www.kti.admin.ch/?lang=en&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1ad1IZn4Z2qZpnO2Yuq2Z6gpJCDeYR,hGym162epYbg2c_JjKbNoKSn6A-- (last visited Jun. 3, 2013). [9] Supra note 5. [10] Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/default.aspx (last visited Jun. 3, 2013). [11] Id. [12] Foundation Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/foundationcouncil.aspx (last visited Jun. 3, 2013). [13] See Statutes of Swiss National Science Foundation Art.8 & Art. 9, available at http://www.snf.ch/SiteCollectionDocuments/statuten_08_e.pdf (last visited Jun. 3, 2013). [14] National Research Council, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/researchcouncil/Pages/default.aspx (last visted Jun.3, 2013). [15] Theres Paulsen, VISION RD4SD Country Case Study Switzerland (2011), http://www.visionrd4sd.eu/documents/doc_download/109-case-study-switzerland (last visited Jun.6, 2013). [16] Research Commissions, Swiss National Science Foundation, http://www.snf.ch/E/about-us/organisation/Pages/researchcommissions.aspx (last visted Jun. 6, 2013).

TOP