英國作為歐洲金融重鎮,不論各行業均有蒐集、處理、利用歐盟會員國公民個人資料之可能,歐盟一般資料保護規則(General Data Protection Regulation,簡稱GDPR)作為歐盟資料保護之重要規則,英國企業初步應如何自我檢視組織內是否符合歐盟資料保護標準,英國資訊委員辦公室(Information Commissioner's Office, ICO)即扮演重要推手與協助角色。
英國ICO於2017年4月發布企業自行檢視是否符合GDPR之12步驟(Preparing for the General Data Protection Regulation(GDPR)-12 steps to take now),可供了解GDPR的輪廓與思考未來應如何因應:
德國經濟暨能源部於2016年10月27日召開2016年「中小企業創新核心計畫」年度會議,約有200位專業經理人、企業與學者共同參與討論創新產品未來在市場的趨勢、創新生產流程與技術服務,專家在會中提供許多寶貴意見。聯邦政府中小企業處代表Gleick開幕致詞時表示,中小企業的創新力量決定我們在未來的經濟成就,所以政府需要持續投資在研究與創新以及適當的補助。 經濟暨能源部以「中小企業創新核心計畫」補助中小企業、研究機構共同開發以市場為導向的研究與創新技術,透過共同合作使參與的企業更具有產業競爭優勢,此計畫於2016年提供543百萬歐元補助,日前亦通過2017年548百萬歐元補助預算。 中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。ZIM計畫中補助的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年4月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。
公私合作的科技創業投資機制研析-以德國高科技創業者基金(HTGF)為例 歐洲議會近日通過《數位營運韌性法案》,堅守數位金融市場安全為因應金融產業數位化及鼓勵金融業創新,並在打造歐盟金融業競爭之同時,確保消費者之保護及金融市場之穩定,歐盟執委會於2020年9月間通過「數位金融整體計畫」(Digital Finance Package),該計劃包含之項目十分廣泛,建構了歐盟未來對於數位金融市場之整體性立法框架。 而2022年11月甫通過之「數位營運韌性法案」 (Digital Operational Resilience Act, DORA)便是數位金融整體計畫中之一分支,該法案預計將於2025年生效。有鑑於過去歐盟會員國各自對資通安全事件行動效果有限,且國家措施之不同調導致重疊、不一致、重複之要求而產生高昂之行政和法遵成本,此情況分裂了單一市場,破壞了歐盟金融機構之穩定性和完整性,並危及消費者和投資者保護,遂有本法案之誕生。 本法案主要之訂定目的在於建立資通安全事件之要求標準及通報流程機制以加強銀行、保險業、投信投顧等金融業者之資通安全,使其面臨網路攻擊時,能保有韌性及恢復力,並維持正常之營運狀態。具體而言,本法案為促金融業者達成高度數位經營韌性之統一要求,遂要求金融業者採取以下手段: (一)資通風險管理監控 (二)資通事件之報告及建立於自願基礎上之重大網路威脅通報 (三)向主管機關通報重大營運或支付安全有關之事件 (四)數位營運韌性檢測 (五)有關網路威脅或漏洞有關之資訊情報共享 (六)健全控管對第三方資通技術供應者之機制。 總地而論,本法案透過建立歐盟統一之資通安全事件通報原則及營運韌性檢測標準等方式加強歐盟之眾金融機構在受網路攻擊之應對能力,且將可避免過去各國間無法取得共識,金融機構於發生資通安全事件時手足無措之窘境,值得讚許,或可為我國未來借鏡採納。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。