澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner,OAIC)在2019年11月發布的「2018-2019年度健康數位資料報告」(Annual Report of the Australian Information Commissioner’s activities in relation to digital health 2018–19),主要說明澳洲政府實施「選擇退出機制」(opt-out)後,對「我的健康紀錄系統」(My Health Record System)(下稱系統)發生的影響,以及有將近1成的國民大量選擇退出系統,造成系統的醫療健康資料統計困難之檢討。

  OAIC認為會發生國民大量選擇退出系統的原因,主要是不信任政府對系統資料保護及不清楚系統使用功能有關,因此提出年度報告,內容如下:

一、改善民眾對醫療資料保護的不信任,例如對醫療業者,開發保護病患隱私的指導教材,防止、外洩即時處理的能力。
二、加強宣傳,例如開發線上資源、影音等,讓民眾在使用系統時能有更清楚認識,且對選擇退出有更明確的認知。
三、改進系統設計,讓民眾能更清楚的看見使用說明,也能隨時掌握在系統上的資訊、設置警報提醒來防止他人侵入、也增加取消功能使資料達到永久刪除的效果。

  建置該系統之目的,是因為國家有蒐集與使用國民的醫療健康資料需求,國民也能使用系統查看醫療紀錄、藥物過敏紀錄、曾使用與正在使用的藥物、血液檢查等;醫療人員也能透過醫療資料之電子化,減少重複及不必要的醫療檢查、對症下藥、避免因過敏引起的反應等,將醫療資源做有效的運用。

  系統建置是依據「我的健康紀錄法」(My Health Records Act 2012)第三章第一節註冊規定,要將國民的醫療健康資料納入系統,但不願意加入者,得選擇退出系統。而澳洲政府依據此法訂定選擇退出機制,2018年7月正式實施,要求全民強制加入系統,同時開放選擇退出機制,讓不願意加入系統的國民能選擇退出系統;選擇退出機制截止日期原先在2018年10月中旬,但在國民大量反應下,澳洲政府決定延至2019年1月底;在選擇退出機制的實施截止後,OAIC在2019年11月對選擇退出機制做出檢討報告,期望能透過檢討報告提出的建議來增強民眾對系統的信任與促進系統使用率。

相關連結
相關附件
你可能會想參加
※ 澳洲隱私保護辦公室檢討實施「選擇退出機制」後對「我的健康紀錄系統」之影響, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8428&no=57&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
行動生活之隱私爭議-現行法制能否妥善處理位置資訊衍生問題

Apple Inc. 因販售個人資料面臨團體訴訟

  三位來自Massachusetts州的州民,以Apple Inc.(下稱Apple)為被告,於該州地方法院提起團體訴訟。其等主張在2012年至2013年間,透過信用卡於Massachusetts州Apple的零售商店購買該公司相關商品時,Apple有過度蒐集與不當利用個人資料之情形。據Apple網站指出,消費者得選擇透過信用卡的方式購買商品,然若選擇信用卡方式付費,必須提供個人相關識別訊息,包含完整的郵政編碼,如果提供不完整,Apple將不會允許使用消費者使用信用卡方式付費;且Apple亦在網站上聲稱保有允許提供該類訊息予提供產品和服務的合作夥伴,或得利用該類訊息幫助行銷的權利。故原告等透過信用卡消費後,收到不必要的市場行銷資訊;又Apple將原告等人可識別的個人資訊銷售第三方公司,並在未顧及原告等權益下,挪用了該具有經濟價值的個人可識別資訊。基於上述理由,原告等請求至少500萬元美金之損害賠償,其中不包含訴訟費用以及相關利息等其他費用。   依據Mass. Gen. Laws ch. 93 §105 規定,不論是個人、商號、合夥、公司或一切營業人,當接受信用卡交易模式時,並不能要求消費者填寫任何個人可識別的資訊。若法院同意原告們的訴求,Apple將因「不公平且欺騙之貿易行為」而被認定違反該州法律而必須負擔賠償責任,且Apple也將被要求停止蒐集全州的個人可識別資料。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

英國「創新持續貸款」

  英國創新局(Innovate UK)於2020年11月8日公布「創新持續貸款」(Innovation Continuity Loans)申請指南,作為COVID-19疫情應對計畫的工作項目之一,英國創新局將提供2.1億英鎊的貸款予在疫情影響下持續進行創新活動之國內中小企業。本貸款目標對象為因疫情導致出現資金缺口的中小企業,每一間公司將可申請25萬至160萬英鎊不等之創新持續貸款。   「創新持續貸款」源自2017年的創新貸款實驗計畫(Innovation loans pilot),藉由七項創新競賽篩選出約100位申請人,提供總額約7500萬英鎊的創新貸款;此次創新持續貸款則不採競賽方式,而是針對受疫情影響的中小企業創新活動,透過審查機制提供貸款予申請人。申請人資格為正在執行受創新局補助之創新活動者、過去36個月曾受創新局補助而目前正在進行其他創新活動者或是過去36個月並未獲得創新局補助之創新活動的執行、完成或延續性工作者,且確實因COVID-19疫情影響出現資金短缺之中小企業,即可向創新局申請創新持續貸款。   創新局將藉由審查申請者提交至今的工作成果與品質、受疫情影響程度與資金需求情形,評估該創新活動的後續發展潛力,向合格的申請人提供年利息僅3.7%的創新持續貸款。合格的申請人能在2022年3月31日或約定日期前,直到產品首次商業銷售為止,分階段領取貸款,以年利率3.7%計息;產品首次商業銷售後可額外有兩年的寬限期,在產品首次商業銷售或寬限期結束後五年內,申請人必須償還貸款,未償還部分則改採年利率7.4%計息。藉由低利貸款的資金挹注,協助從事新創活動之英國中小企業得以紓困以度過疫情難關。

TOP