英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年10月21日發布《資料主體近用權指引》(Guidance of Right of access),針對資料主體行使資料近用權之請求(Data Subject Access Request, DSAR),受請求之機構應如何進行識別判斷、簡化處理方式,以及特殊例外情況等法遵重點提供指導方針,並進行實例說明解析,以幫助受請求之機構在面臨資料主體之近用權請求時能快速且有效的處理。
英國「個人資料保護法」(The Data Protection Act 2018)依據歐盟「一般資料保護規則」(GDPR)於2018年重新修訂,其中資料近用權更是對於資料主體相當重要的基本權利,進而影響受請求之機構必須了解如何有效率的處理資料近用權之請求,並確實履行其在法規上所要求的保護義務,主要分為三點:
歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)第15條為「資料主體之接近使用權(Right of access)」,其第1項規定「資料主體有權向控管者確認其個人資料是否正被處理」,資料主體並得知悉其個資處理之目的、所涉及之類型等事項。該條係為使資料主體在獲得充分、透明且容易接近之資訊,使其得更輕易的行使如資料刪除或更正等權利。 因條文在文字上具抽象性,就具體內涵仍須有一定基準,故歐盟個人資料保護委員會(European Data Protection Board, EDPB)於2022年1月18日,針對GDPR中之接近使用權提出指引(Guidelines 01/2022 on data subject rights - Right of access),闡明在不同的情況中,資料主體應如何向資料控管者(Data Controller)主張接近使用權,並且說明資料控管者針對此項權利之義務內涵。 就具體內容,該指引包含:接近使用權之範圍、資料控管者應向資料主體提供之資訊內容、資料主體請求資訊之格式、資料控管者應如何提供資訊、GDPR第12條第5項所稱「資料主體之請求明顯無理由或過度者」之概念為何。指引並製作流程圖,以便利資料主體輕易的了解向資料控管者主張權利之步驟。 而對於資料控管者,指引亦說明其應如何解釋與評估資料主體之請求、應如何回覆特定請求、限制接近使用權之例子。該指引旨在從各方面分析接近使用權,經由舉例與設想特殊情形,以求為該權利提供更精確之指導。
美國加密法案隨潮流再起緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。 加密法案的主要內容係以兩方面進行加密應用之保護, 各州州政府不得授權或要求產品或服務的製造商、開發商、銷售商或供應商,(A)設計或更改產品或服務中的安全功能,以供其進行監視或允許其進行實體搜索;(B)使其有能力解密或便於理解加密應用後的內容。 各州州政府不得禁止加密或類似安全功能的產品或服務,進行製造、銷售或租賃、提供銷售或租賃, 或向公眾提供覆蓋的產品或服務。此外,法案亦針對相關服務或產品的定義作了明確的說明。 本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。
RFID應用發展與相關法制座談會紀實 美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。