WHO公布實施遠距醫療綜合指引

COVID-19大流行對公共衛生保健服務施加了巨大壓力,同時限制了實體醫療服務的近用,引起人們對實施或擴大實施遠距醫療(Telemedicine)的極大興趣。為了對應全球對遠距醫療服務的增長,世界衛生組織(World Health Organization , WHO)於今(2022)年11月9日發布《實施遠距醫療綜合指引》(Consolidated Telemedicine Implementation Guide),以幫助政策制定者、決策者與實行者設計與監管遠距醫療之實施。

遠距醫療,涉及使用數位科技來克服公衛服務的距離障礙,具有改善臨床管理和擴大醫療服務覆蓋範圍之潛力。遠距醫療已證明的好處包含減少不必要的臨床就診、提供更及時的醫護和擴大醫療服務的覆蓋率。

這份指引建議政策決策者以及設計和監管遠距醫療之實施人員,實施遠距醫療應分為三個階段,其詳細步驟重點如下:

階段一:評估情況

1.組建團隊,並確立目標:確定應參與遠距醫療設計、管理和實施的利害關係人。

2.定義衛生計畫的背景與目標:確定遠距醫療的服務計畫與其地理範圍。

3.對作業環境進行分析:對應用軟體(Software Applications)與通信平台的訊息傳遞通道(Channel)進行作業環境分析、評估應用軟體是否可符合硬體之需求。

4.評估有利環境:包含評估數位成熟度以確定基礎設施與組織需求、審查公衛工作者的能力、評估監管與政策之顧慮、考慮資訊跨域流動之影響、探討財政機制。

階段二:實施之規劃

1.確定遠距醫療系統將如何運作:定義功能性和非功能性需求、因應需求更新之工作流程、進行廣泛的用戶測試、變更管理計畫。

2.實施病人與衛生系統工作者之安全與保護機制:包含建立個資隱私、近用和保護病人個資的系統、實施公衛人員身分驗證之方式、決定並揭露是否會進行錄音錄影等事項。

3.建立標準操作程序(Standard Operating Procedures, SOP):確定遠距醫療適用的案例與潛在責任、決定培訓方式與支持管道、建立確定身分之流程、建立明確的同意文件、討論是否需改變公衛人員的薪酬、建立聯網醫療器材(Connected Medical Devices)的管理計畫。

4.強化客戶/病人參與以及性別、公平與利害關係人權利:決定遠距醫療之推廣機制(Mechanisms for Outreach)、評估遠距醫療之公平性、對利害關係人權利的影響與確保殘疾人士的可近用性。

5.制定預算:確定總成本預算、計畫如何將遠距醫療服務整合到常態醫療服務和採購安排之中。

階段三:監測和評估(Monitoring and Evaluation, M&E)與持續改善

1.確定監測和評估目標:定義績效評估和影響指標。

2.計畫持續改善和適應性管理:加入日常監管和持續改善機制、降低潛在風險。

WHO最後提醒遠距醫療是對於醫療服務的補充而非取代,並提供一個確保病人安全、隱私、追溯性、問責制的可監督環境。

本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw

相關連結
你可能會想參加
※ WHO公布實施遠距醫療綜合指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8944&no=57&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
中國大陸國務院印發關於實施《促進科技成果轉化法》之規定

  中國大陸於2015年8月29日修改了其《促進科技成果轉化法》,為了該法的實施,中國大陸國務院於今年2月17日的常務會議中,即發表了其對於鼓勵研究機構及大專院校之科技研發成果運用的相關措施;而針對這些措施,中國大陸國務院於同月26日制定了相關的具體規定,並在3月2日時發布,並行文於各相關機關。   該規定分作16點,主要分三個大方向,包括促進研究機構及大專院校的科技研發成果轉移於民間企業、鼓勵科技研發人員發展創新技術以及創業活動,與科技研發環境的營造等等。   具體而言,其主要措施包括允許研發機構得自主決定其科技研發成果的運用,原則上不需要向政府申請核准或報備、其運用後的收入不需繳交國庫,得全部留於研發機構內,用於對研究人員之獎勵及機構內科技研發之用、其並對該收入用於對研究人員獎勵之比例下限作出明文規定、允許國立研發機構及大專院校之研究人員在一定條件下得保留原職位在一定期間內至民間企業兼職,或進行創業活動,以從事科技研發成果的運用,以及對研發機構的考核標準應納入對機構之科技研發成果及運用的評鑑等等。

歐盟執委會對荷蘭T-Mobile併購Tele2一案展開第二階段的反競爭調查

  荷蘭電信商T-Mobile NL根據歐盟併購條例收購Tele2 NL一案使執委會擔心其合併可能導致價格上漲,並損害荷蘭消費者的權益。   本交易案主角為德意志電信(Deutsche Telekom, DT)的子公司T-Mobile NL,以及Tele2的子公司Tele2 NL,兩者分別是荷蘭手機電信市場的第3大和第4大業者。T-Mobile NL在去年12月宣布將以2.21億美元的現金收購Tele2 NL,並持有合併後公司25%的股權。本併購案將使荷蘭的手機電信商數量從4個減少到3個。但合併後的新公司仍無法超過前兩大電信公司KPN和Vodafone。   DT表示,合併後的公司將在T-Mobile品牌下運營,新公司由於規模增長,將能夠打破目前KPN與Vodafone的雙佔市場。結合原來2間公司的資源,可以帶給電信市場更有效的競爭,並有利於5G佈局。   執委會的初步調查確定了以下主要爭點: 目前T-Mobile NL和Tele2 NL 在荷蘭手機電信市場相互競爭。執委會擔心本併購案會減少市場參與者的數量,使剩下的業者更不願進行有效競爭。可能導致價格上漲和投資減少。   執委會還打算進一步調查另外2個問題: 合併後電信商數量的減少可能會削弱競爭壓力,並增加電信商聯合行為的可能性,並提高價格; 除了4家擁有基礎設施手機電信商之外,還有一些活躍在市場中的虛擬電信商,它們使用其他業者的基礎設施向消費者提供電信服務。   執委會擔心,未來虛擬電信商如想利用基礎設施,可能遭受更多阻礙。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

談我國基因改造生物田間試驗管理規範之現況與修正方向

TOP