世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:

(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。

(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。

(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。

(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。

(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。

(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9093&no=57&tp=1 (最後瀏覽日:2025/12/01)
引註此篇文章
科法觀點
你可能還會想看
美國環保署提出汽車廢氣排放新標準以加速電動汽車發展

美國環保署(United States Environmental Protection Agency, EPA)為限制汽車廢氣排放污染物對環境造成的危害,根據美國《潔淨空氣法》(Clean Air Act, CAA)的授權,於2023年4月12日提出《2027年式輕型、中型商用車車型污染物排放標準》(Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles),以及《重型商用車溫室氣體排放標準-第三階段》(Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3)這兩件汽車廢氣排放新標準,期加速電動汽車(Electric Vehicle, EVs)發展、加速潔淨交通轉型。 《2027年式輕型、中型商用車車型污染物排放標準》以及《重型商用車溫室氣體排放標準-第三階段》分別針對2027年到2032年所出廠的輕型商用車、中型商用車以及重型商用車的汽車廢氣排放標準做出更嚴格的新規範,預計將成為美國迄今為止最嚴格的汽車廢氣排放標準。目標是到2032年時,輕型商用車行駛每英里二氧化碳平均排放量下降至82公克,溫室氣體排放量相較於2026年車型年標準將減少56%;中型商用車行駛每英里二氧化碳平均排放量下降至275公克,溫室氣體排放量相較於2026年車型年標準則將減少44%。至於重型商用車,以重型拖曳機(heavy-haul tractors)為例,將從2027年車型年行駛每噸英里二氧化碳平均排放量48克,到2032年時下降至41公克左右。 根據這兩件汽車廢氣排放新標準,並未禁止化石燃料汽車的製造或銷售、亦未規範要求電動汽車的年製造量或年銷售量要達多少數量或比率,而是為汽車限定更嚴格的廢氣排放標準,因此,仍無疑地將迫使汽車製造商減少販售化石燃料汽車、加速推動電動汽車生產的腳步以符合新的排放標準規定。環保署預測汽車製造商在為符標準所採的相應作法之下將會大幅提高電動汽車在新車的銷售比率:到2032年時,電動汽車將佔輕型商用車新車銷量的 67%、中型商用車新車銷量的46%。而此累計可望到2055年時減少約100億噸的二氧化碳排放,相當於美國2022年二氧化碳總排放量的兩倍多。將有效減少有害空氣汙染、並大幅降低因空氣汙染所致的罹病風險以及過早死亡等危險。 藉由新的排放標準,將逐步淘汰化石燃料汽車的生產,加速潔淨交通轉型,有效應對氣候危機並提高全國各社區空氣品質。

歐盟更新資料法問答助釐清適用範圍,企業宜因應調整資料管理機制

歐盟委員會(European Commission)於 2025年2月3日因應將於2025年9月12日施行的資料法(Data Act),就其常見問題說明進行補充與更新為1.2版(Frequently Asked Questions on the Data Act,下稱FAQs),以協助企業面對資料法施行後的挑戰。 於新版FAQs中就資料法進行補充說明,以助企業了解資料法之適用範圍,就資料法所稱之聯網裝置與服務,聯網裝置泛指可以連上網路的裝置,包含智慧型手機,並僅限於由使用者所擁有的聯網裝置,另就聯網服務則須具備雙向資料傳遞且須與聯網產品的操作功能有影響之服務。 就資料持有者有義務提供之資料適用範圍,僅限於聯網裝置與相關服務所產出的原始資料與預處理資料(原始但可用),資料持有者就原始資料或預處理資料進行加值所產生資料,如經分析所產生之衍生資料、經投入重大資源進行清理之資料等,則不在共享義務之範圍內,另就資料的內容有其他法律保護亦不在資料法的範疇中,如網路攝影機之照片/影片有受著作權法保護係屬於資料內容,網路攝影機之使用模式/電池狀態/照明強度等資料才是資料法所規範之資料,惟須留意若影像之內容非屬著作權保護之標的,如網路攝影機因具感測功能而自動就影像判斷是否異常現象或提供建議,此類影像因不具人類創意而不受著作權保護,仍屬資料法所涵蓋範圍。 於FAQs之解釋中,就資料法實際操作與預期有所差異,歐盟委員會後續亦會整合與數位資料相關之法規,如建立資料聯盟策略(Data Union Strategy),以助於企業促進數位資料的使用與共享。國內廠商若有提供歐盟客戶相關聯網設備與服務時,須留意內部資料管理制度能否滿足資料法要求,確保組織有因應相關法規議題的變化進行制度的變更,如何將外部議題與資料管理制度連結,可參資策會科法所創意智財中心就數位資料管理機制所公布之《重要數位資料治理暨管理制度規範(EDGS)》,將組織營運所在國別之法規範變動納入關注之外部議題,並設定對應之資料政策與目標,建立符合法令規範之資料管理制度,如是否得以識別為資料法所適用之資料等,以確保組織資料管理機制符合法令要求。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國上訴法院法官對軟體專利之必要性表示懷疑

  英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。   軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。

美國食品藥物管理局發布《人類細胞及基因製劑生產變化及可比性試驗》指引草案—建構再生醫療產品品質要求

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。 之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。 可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。 細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

TOP