世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
為了瞭解德國消費者對於市面上眾多應用「奈米」科技之消費產品的想法,德國聯邦風險評估研究所(Bundesinstitut für Risikobewertung,BfR)於2007年抽樣調查一千位消費者,並於該年底公布調查結果。根據該問卷調查結果顯示,超過三分之二(66%)受訪者對於奈米科技發展持樂觀態度,並認為應該支持奈米科技的持續發展,並且認為奈米科技改善了生活品質以及其帶來的效益勝過風險。 但是,對於不同領域所應用之奈米科技,受訪者卻表現出不同的態度。因此該研究所所長Andreas Hensel認為,消費者不是依據事實為評價,而是依據「感性標準」。也就是說,他們所「感覺到」的風險在他們理解新科技時扮演重要角色。 相較於2004年所做的問卷調查,目前約有52%的受訪者聽過奈米概念,之前的調查結果只有15%。多數受訪者相信奈米可以幫助醫學領域的發展;其也相信應用奈米於顏料、漆料可提高耐刮與耐磨之能力。在紡織品領域也一樣,民眾相信防污的產品;受到民眾接受的還包括奈米科技在包裝材料以及防曬產品領域之應用。不過,對於其他化妝品卻只有53%的受訪者相信奈米的改善功能。絕大多數受訪者都拒絕將奈米科技應用於食品:69%受訪者拒絕添加「奈米」於調味料,即使奈米可以防止結塊;而就算因此可以延長食物保存期限,也有高達84%的受訪者拒絕在食物中添加奈米微粒。 多數的消費者獲取奈米科技資訊主要來自於大眾媒體,如電視、報紙、期刊與網際網路。但是他們是否相信該資訊,則取決於提供者為何,最受信賴之資訊來自於消費者組織,如消費者保護團體以及產品檢測基金會(Stiftung-Warentest)以及科學界(92%),最不受信賴的資訊則來自於經濟(32%)與政治(23%)。
日本政府對於「小型無人機進階安全確保制度」進行研議,並研提「航空法」修正建議日本政府於2016年1月5日成立「小型無人機進階安全確保制度設計相關小組委員會」(小型無人機の更なる安全確保のための制度設計に関する分科会),聚焦無人機飛安方面之實務議題。會議由内閣官房内閣参事官擔任議長,並由國土交通省航空局協助辦理,民間參與者則多為相關產業公協會,目前規劃每兩個月開1-2次會議,其運行方式包括:原則上為非公開會議,其會議資料將於會後公開,但若議長認有必要,則得決定一部或全部不公開;此外,對於委員會成員以外的民間企業及專家學者之意見,亦應聽取。 為更進一步確保小型無人機於飛行時之安全性,本次會議對「航空法」提出如下修正建議: (1)除「航空法」第一百三十二條之二所規範之飛行方式及禁飛區域外,尚有其他相關飛安重要事項亦應注意,例如:機體本身之缺陷、操控者失誤、不可預期的天候變化、機體重量等(一定重量以上之無人機,對於機體性能及操控者技術應有更高要求,未來可思考訂定罰則或提供擔保)。 (2)對於機場周邊應有比現行法更嚴格之規範,除因此處操控無人機容易誤入禁區外,該範圍以內通常是飛安事故搜救區,恐妨害搜救之進行。 (3)關於禁區內飛行許可之審查,應包含:機體機能與性能、操控者知識、技術與經歷。 (4)對於商業、營業用無人機,應有更高的安全性要求。但何謂商業、營業用之定義及更高安全性究何所指須有更明確的標準!
世界經濟論壇發布《2022年全球網路安全展望》世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。