世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
聯合國委員會通過聲明 禁止各種形式複製人研究面對科學界越來越無法抵擋的複製人浪潮,聯合國二月十八日召開一項特別會議,並表決通過聲明,呼籲各國政府禁止各種形式的複製人研究,包括用於研究人類幹細胞的技術等。不過項聲明並不具強制力。 聯合國法律委員會是以七十一票贊成,三十五票反對,四十三票棄權下,通過這項由宏都拉斯和美國布希政府提出的支持禁止複製人的聲明,委員會通過後交給聯合國大會,由一百九十一個會員國成員最後決定。回教國家已經表明,聯合國大會表決時將棄權,因為聯合國內部並無法達成共識﹔而目前各自有人類幹細胞研究的英國,比利時和新加坡都反對這項聲明,並稱聲明內容不會影響他們的「醫療性幹細胞研究」。 會中支持和反對陣營的最主要爭議核心,在於醫療性複製人類的研究,這類研究必須複製人類胚胎取得幹細胞,實驗結束後銷毀。支持這項研究技術的科學家認為,人類幹細胞研究為許多至今仍無法治療的疾病帶來新希望,例如阿茲海默症,各種癌症,糖尿病和脊椎傷害患者,影響約一億人﹔但是如美國,加拿大等反對國家則認為,這種研究不論是哪一種目的,都是在剝奪利用一個人的生命。聯合國成員在二○○一年起討論制定一項具約束力的全球性公約,禁止複製人,不過各國歧見擴大,一直無法達成共識。義大利因此提議制定不具強制力的宣言,呼籲各國各自立法「禁止任何透過複製程序產生人類生命的企圖,以及任何意圖達成此一目的的研究。」不過,宏都拉斯將此建議擴大,提議聯合國聲明「禁止所有形式的複製人行為。」
.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。 本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。 但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。
臉書(Facebook)被控告違反和解協議臉書(Facebook)在2011年11月與美國聯邦貿易委員會(Federal Trade Commission, FTC)針對用戶資料的隱私權問題達成和解,包括第一:臉書必須遵守其自行提出的隱私權政策;第二:臉書必須要事先得到使用者的同意,才能更改其資訊分享的設定;第三:當使用者刪除其帳號的三十天內,臉書必須實際上使任何人不能再取得相關資訊;第四:必須對新產品或服務建立並維護其隱私權保障的計畫;第五:在未來二十年內,臉書必須由獨立的第三人稽查其隱私政策,以維護使用者的資訊隱私保護。 但是公益團體電子隱私資訊中心(Electronic Privacy Information Center, EPIC)最近指控臉書的Timeline功能違反和解協議的第二條。在EPIC的指控中表示:臉書必須要事先得到使用者的同意,才能更改其資訊分享的設定。而Timeline的功能在2011年12月6日上線後,完全改變了使用者揭露其資訊的方式,強化使用者張貼的重要事件,並回溯資料至該使用者第一次登入臉書時(甚至更早至第一次輸入相關資料時)。雖然臉書提供七天時間給使用者可以編輯Timeline,刪除不希望公開的照片或貼文,但幾乎沒有人知道。EPIC因而要求FTC介入調查。