世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
強化政府橫向協調,提升AI治理—澳洲擬於2026年初設立AI安全研究所澳洲政府於2025年11月25日宣布,將於2026年初設立AI安全研究所(AI Safety Institute)。澳洲AI安全研究所的設立目標,為提供相關的專業能力,以監管、測試與共享AI在技術、風險、危害層面的資訊。經由辨識潛在的風險,提供澳洲政府與人民必要的保護。AI安全研究所將以既有之法律與監管框架為基礎,因應AI風險,協助政府各部門調整相關規範。其主要業務如下: .協助政府掌握AI技術的發展趨勢,動態應對新興的風險與危害; .強化政府對先進AI技術發展及潛在影響的理解; .共享AI資訊與作為協調政府各部門的樞紐; .經由國家AI中心(National AI Centre,NAIC)等管道,提供事業、政府、公眾與AI相關的機會、風險和安全的指導; .協助澳洲履行國際AI安全協議的承諾。 AI安全研究所並為2025年12月2日,工業、科學與資源部(Department of Industry, Science and Resources)發布的國家AI計畫(National AI Plan,下稱澳洲AI計畫)中,保障應用AI安全性的關鍵項目。澳洲AI計畫指出,AI安全研究所將關注AI的上游風險(upstream AI risks),與下游危害(downstream AI harms)。所稱之上游風險,係指AI模型和系統的建構、訓練方式,與AI本身的能力,可能產生的疑慮。下游危害,則係指使用AI系統時,可能的實質影響。 AI安全研究所將支援與國際、政府各部門間之合作;並共享新興的AI技術能力,以及對AI上游風險的見解,發布安全研究成果,提供產業與學術界參考。AI安全研究所監測、分析與共享資訊,提出政府各部門,對AI下游危害,可採取的一致性應對建議。 綜上所述,澳洲政府提出國家AI計畫,於既有的法制體系,滾動調整相關規範,以應對AI風險。並成立AI安全研究所,追蹤國際AI發展脈動,及時提供澳洲政府應對建議,協調各部門採取一致性的行動。澳洲政府對新興AI技術,所採取策略的具體成效,仍有待觀察。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
虛擬的永恆與往生者個人資料運用逝者已矣,已不再是定律。2020年2月,韓國文化廣播公司(MBC)播放了一部紀錄片,紀錄了電視台製作團隊實現一位母親以虛擬現實VR(virtual reality)與已逝女兒重逢的過程,製作團隊透過動態捕捉技術,錄下一位兒童演員的動作,用以塑造往生者的行為動態,並重現還原往生者的聲音,製作出往生者的的三維虛擬影像。葡萄牙Henrique Jorge公司建立一個名為ETER9的社交網路,將每位用戶與AI進行配對,AI會學習複製該用戶於社交網路之行為,並可代其發表回覆與評論,即使其用戶已往生,AI仍持續運行。現今許多科技新創公司正著手研究「數位來生」,使往生者於數位中重生。 牛津網際網路研究所(Oxford Internet Institute)的一項最新研究顯示,估計約50年後,Facebook內往生者的帳號數量將超過存活者的帳號數量。而FaceBook可視為現今人類物種歷史上最大的人類行為資料庫,曾經創建過個人資料的用戶都不復存在,但他們的數位資訊卻永存於網際網路中,但在多數國家,往生者的資料並不是個人資料保護法令所含括的保護客體,往生者個人資料之運用勢必成為道德與法律上的重要課題。 英國阿斯頓大學的Harbinja教授表示,或可由遺囑中有無處置往生者個人資料之指示作為參考,但其亦表示在某些國家存在無法保證遺囑可得完全兌現的問題,例如,在英國遺囑中決定了個人資料的處理方式,仍可能僅被視為是個人意願,類似遺囑中選擇火葬的決定仍可能被執行者和繼承人推翻,且無法強制執行。 我國個人資料保護法施行細則第2條規定:「本法所稱個人,指現生存之自然人。」,所保護的個人資料對象是指「現生存有生命」的自然人,並不包括「往生者」,而歐洲部分國家允許繼承人行使被繼承人之個人資料保護相關權利,例如匈牙利規定本人可指定特定人或由直系親屬行使本人往生後之權利、西班牙則規定繼承人有權行使GDPR第15條資料查詢權、第16條更正權和第17條刪除權,而義大利則規定親屬代表可基於保護家庭之因素行使往生者於GDPR第15條至第22條之權力。ETER9便可讓用戶設置死後停止AI代替回覆的功能,也可以指定授權往生後的帳號負責人。在數位來生的議題中,我國應可參酌部分歐洲國家運用GDPR規定從而規範往生者個人資料權利之方式,進而探討我國對往生者個人資料運用之相關議題。