世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素:
(1)文件化與透明度(Documentation and transparency)
開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。
(2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches)
開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。
(3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation)
開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。
(4)資料品質(Data quality)
開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。
(5)隱私與資料保護(Privacy and data protection)
開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。
(6)參與及協作(Engagement and collaboration)
開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
本文為「經濟部產業技術司科技專案成果」
美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
歐盟科技策略新趨勢-生物經濟策略為引領歐盟各會員國邁向以生物發展為導向之經濟體時代,歐盟指委會(European Commission)乃於2012年2月13日通過歐盟永續生物經濟體策略計畫-Innovation for Sustainable Growth-a Bioeconomy for Europe,期待藉此引導歐盟邁想一個創新且低排放之永續發展經濟體。 隨著全球人口逐年增長,並預計於2050年邁向全球9億總人口數之關卡,但自然資源之相對有限,因此歐盟指委會認為歐盟經濟體需隨著時代變遷趨勢及早轉型,並且強化其發展永續性。為協助歐盟各會員國因應全球局勢變化,歐盟指委員進一步於其永續生物經濟體策略計畫中提出三大重點策略-1.強化創新,並發展新興科技,進而為生物經濟體做準備;2.建置並強化生物經濟體相關市場與競爭力;3.透過相關政策之研擬,加強立法者與產業間之聯結性。而除了透過前述之三大重點策略以做為發展生物經濟體之基礎外,歐盟指委會亦希望能藉由歐盟Horizon 2020計畫下之各相關配套措施,以及各項研發經費之投注,進行各項生物和綠色科技,如能源、奈米科技、和資通訊技術(ICT)等相關領域之創新研發,進而導引歐盟經濟體邁向一個全新永續新境界。 目前歐盟會員國如丹麥、芬蘭、德國、愛爾蘭、和荷蘭皆已提出相關生物經濟體策略,而國際間如加拿大、中國、美國、和南非對此議題,亦位處於發展中或是已發展階段。以生物科技為主之知識經濟發展導向乃為當前全球經濟發展趨勢,如何連結科技研發創新,進而發展永續經濟,實為一值得關注與思考之問題。
美國眾議院發布反壟斷五大法案,恢復數位市場競爭並防堵科技平台壟斷美國眾議院反壟斷委員會於2021年6月11日宣布五大反壟斷立法議案,目標是透過立法提升消費者、勞工和中小企業競爭空間,防止大型科技平台壟斷數位市場。2019年美國國會反壟斷委員會調查互聯網巨頭Amazon、Google、Facebook、Apple(GAFA)涉嫌濫用市場支配地位進行壟斷、抑制競爭、侵害用戶隱私、破壞新聞出版多元化。2020年10月發布《數位市場競爭調查》(Investigation of Competition In Digital Markets)強調恢復數位經濟市場競爭力重要性。2021年美國眾議院隨即提出五大反壟斷改革法案具體落實政策方向。 終止平台壟斷法案(Ending Platform Monopolies Act) 防止占主導地位的平台利用其對多個業務的控制能力,由董事或受託人持有公司25%以上的股票、盈利或資產,或以其他方式掌握實質控制權,要求用戶使用其平台購買產品或服務進而取得優勢地位。 美國選擇與創新線上法案(American Choice and Innovation Online Act) 禁止平台的歧視行為,包括使自家產品、服務及業務在平台上享有對手沒有的競爭優勢,禁止自我偏好或歧視其他同類業者之行為。 平台競爭與機會法案(Platform Competition and Opportunity Act) 禁止具獨占優勢平台藉由收購其他具競爭力對手,以擴大或鞏固線上平台市場力量。 透過啟動服務交換強化相容性和競爭力法案(Augmenting Compatibility and Competition by Enabling Service Switching Act) 透過啟動服務交換,滿足互操作性和資料可攜性,降低企業和消費者進入壁壘與轉換成本,使資料更容易移動到其他平台。 併購申報費現代化法案(Merger Filing Fee Modernization Act) 提高企業向政府申請併購案之審議費用,例如超過50億美金以上併購案審議費用從美金28萬提升至225萬,確保美國司法部和聯邦貿易委員會執行反壟斷資源。
美國明尼亞波利斯市禁止政府部門使用人臉辨識技術美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。 新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。 明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。