印度電子資訊產業技術部(MeitY)2022年11月在網站上公布了個人資料資訊保護法草案(Digital Personal Data Protection Bill,以下簡稱該法案),並於2023年7月提交議會審查。目前印度民法不承認未成年人(未滿18歲者)具有自主簽訂契約的能力。因此,取得的兒童同意不具有法律效力,必須徵得父母或是監護人的同意才能合法蒐集兒童個人資料。
根據印度2022年個人資料資訊保護法案草案,任何未滿18歲的人都被歸類為「兒童」。該法案中同時限制專門向兒童發送的廣告,並且監管任何追蹤兒童行為的情況。目前國際隱私法(例如:歐盟通用資料保護條例 (GDPR)、加州消費者隱私法(CCPA)等)的兒童定義多在13至17歲之間。但考慮到兒童個人資訊的敏感性和潛在危害,印度政府採取了較保守嚴謹的路線。政府也已被授權制定有關處理兒童個人資訊的細則,特别是確保資料使用人不可使用可能對兒童造成傷害的個人資料。
根據社會發展狀況,兒童若每次在網路平台上進行活動時都需經過父母或是監護人同意不甚妥適,且根據前述說明,兒童界定年齡為18歲以下,若依照統一年齡範圍進行控管,實際執行上面臨窒礙難行之處。故修法者在對於該法案修改意見中,引用了其他國家隱私法中的不同年齡分類限制,以求降低年齡門檻限制,或是根據用戶的年齡制定差異化的授權要求。
另一個產生的爭議為,該如何驗證父母或是監護人的同意表示。法條中目前無明確規範何為「有效之同意表示」,現行各平台使用不同的方法獲得父母或是監護人的同意,目前有兩種方式,包括點選「同意」按鈕,或是在用戶條款中表示若使用服務等同於監護人同意。
關於兒童年齡之界定,是否將參考其他國家規範進行差異化設定,目前暫無明確定論(包括如何調整、年齡級距設定),根據資訊使用的普及,兒童年齡的界定可以預期的將會進行調整;關於如何有效驗證父母或是監護人的同意表示,目前在技術上大多服務商都偏好透過會員註冊時的同意按鈕或是用戶條款中列明若使用服務即代表同意這兩種方式認定,在這兩種方式之後,系統是否有設定驗證機制,以及需要何種驗證方式才可以認定父母或是監護人的同意表示是符合法律效力的,都需後續再進行研擬。
美國產業安全局(Bureau of Industry and Security,下稱BIS)於2024年1月18日,針對直接或間接支持美國國家安全和關鍵基礎設施,全面評估供應鏈中成熟節點半導體設備的使用情況。本次調查將根據《1950年國防生產法》(Defense Production Act of 1950)第705條進行,以評估在美國關鍵產業(如電信、汽車、醫療設備和國防工業基地)的供應鏈中使用由中國公司生產的成熟節點晶片的程度和影響力。 BIS同時提供常見問答予各界參考,主要包括如下內容: (1)本次評估調查為一次性的資訊蒐集;不排除未來也可能依指示再次進行類似的評估。 (2)本次評估將提供後續政策制定的參考,以加強半導體供應鏈,促進傳統晶片生產的公平競爭,並降低中國對美國帶來的國家安全風險。 (3)自1986年以來,BIS已就造船、戰略性材料、太空和航空、火箭推進、彈藥和半導體等廣泛項目進行過約60多項評估以及150多項調查。 (4)商務部可能會公開一份主要調查結果的摘要說明。 (5)本次評估並非根據《2021年國防授權法案》(National Defense Authorization Act for Fiscal Year 2021,即俗稱之《晶片法》)第9902節規定進行。個別對調查的答覆不會影響申請《晶片法》或其他政府資助的資格或考量。 (6)本次評估並非BIS對於高階運算晶片規範的一部分,而是著重成熟節點或傳統晶片的舊技術。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐洲五大電信公司聯合呼籲歐盟建立Open RAN創新生態系統歐洲五大電信公司──德國電信(Deutsche Telekom)、法國Orange電信、義大利電信(Telecom Italia)、西班牙電信(Telefonica)與英國沃達豐電信(Vodafone)於2021年11月18日聯合發表聲明,呼籲歐盟執委會與成員國加速開放「開放式無線存取網路」(Open Radio Access Network, Open RAN)的技術應用,並提出「為歐洲建立Open RAN生態系統」(Building an Open RAN Ecosystem for Europe)研究報告。 本報告對Open RAN價值鏈和當前供應商進行分析,發現許多歐洲供應商正處於發展初期,未獲得Open RAN商業契約,且在Open RAN關鍵服務的部分類別(如雲端軟體)中,尚未有歐洲供應商。甚至綜觀Open RAN的各項關鍵服務分布,歐洲供應商僅有少數等。因此,本報告強調歐洲需迫切將Open RAN作為戰略重點,並提出以下五點建議: (一)歐盟的政策制定者應積極推動發展創新、開放及可互通之電信生態系統,並期望歐盟執委會、成員國與產業利害關係人,透過對話與討論,促使全歐洲對Open RAN生態系統之建立產生共識。 (二)執委會應成立下世代通訊基礎設施聯盟,如同過去其為雲端與半導體設立聯盟,作為推動該產業的關鍵力量。此外,為迎接Open RAN新興技術,應提倡如歐盟共同利益重要計畫(Important Projects of Common European Interest, IPCEI)的微電子和通訊技術、5G產業協會與共同承諾推動智慧網路服務多國計畫。 (三)政策制定者應降低歐盟供應商和新創企業之投資風險,並對歐洲未來具有戰略意義的技術領域,以資金與租稅等激勵措施,支持歐洲供應商合作。如由歐盟執委會和各國政府為財團提供資金,使歐洲公司建立穩固的合作關係,並成為Open RAN價值鏈中茁壯成長的供應商。 (四)O-RAN聯盟(O-RAN ALLIANCE)與第三代合作夥伴計劃(3rd Generation Partnership Project, 3GPP)及歐洲電信標準協會(European Telecommunications Standards Institute, ETSI)正式合作,支持採用O-RAN規範作為ETSI的自願性標準,可透過快速程序對現有3GPP規範進行補充。透過促進全球統一的Open RAN標準,確保開放性網路設備的互通性,如:全歐認證的品質與互通性,建立生態系統部署者的信心。 (五)歐盟應與國際合作,促進安全、多樣化及可持續的資訊與通訊技術供應鏈,如:利用七大工業國組織(Group of Seven, G7)、美歐貿易和技術委員會(EU-US Trade and Technology Council)與日歐資通訊技術對話(Japan-EU ICT Dialogue)促進發展和部署開放且可互通的網路架構。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。