法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。
人工智慧操作指引主要內容整理如下:
1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。
2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。
3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。
4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。
5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。
6.必要時進行資料保護影響評估(DIPA)。
7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。
8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。
對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法 每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法 因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法 因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數 此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。
美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系美國衛生及公共服務部(United States Department of Health and human Services, HHS)於2024年9月底發布「聯邦健康IT策略計畫」(Federal Health IT Strategic Plan),強化電子健康資訊存取、交換和使用,提升健康管理能力、改善醫療照護體驗、推動健康研究及創新,並提出四大目標 四大目標包括: 1. 提倡健康福祉:賦予個人管理自身健康的權利,確保個人和公眾獲得現代且公平的醫療服務,並促進社區健康與安全。 2. 強化醫療照護的提供和體驗:提供安全、公平且優質的醫療服務,擴大病人獲取優質醫療途徑並減少健康差異。加強競爭和透明度改善醫療體系,減輕醫療提供者的監管和管理負擔,並增強使用健康IT工具的信心。 3. 加速研究創新:允許健康IT使用者適當存取健康資料以推動個人和公眾健康的改善。加強個人和公眾層面研究與分析,透過使用代表性不足群體的健康資料,促進健康公平。 4. 醫療資料連結醫療系統:持續推動健康IT工具的開發和應用、資料共享、普及健康IT基礎設施、保護個人隱私和安全、整合的公共衛生資料和基礎設施。 在健康IT策略計畫中也聚焦在健康公平性、人工智慧應用、資料共享及安全性等議題,並提出了六大實施原則:以人為本的包容性設計、安全且優質的健康資訊、資料導向的決策、提升全民健康公平性、鼓勵創新和競爭。透過聯邦政府健康IT策略目標與原則,預期在6年內提供更有效、公平和現在化的醫療系統。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
Codex研提進口食品含有未經核准之GMO含量的技術指導原則由聯合國農糧組織及世界衛生組織共同成立的The Codex Alimentarius Commission (Codex),刻正研提一份與GMO有關的重要技術指導原則,以協助各國評估並管控進口食品是否含有未經核准的GMO或由未經核准的GMO所製程的風險,藉此降低食品貿易的障礙。 關於未經核准的GMO,目前歐盟採取的零容忍度政策(zero-tolerance policy),亦即,進口之食品或飼料中,絕對不能含有未經核准的GMO或由未經核准的GMO所製程,至於一般所知的歐盟0.9%的GMO標示義務,是適用在經依法核准上市的GMO,若因技術上不可避免的原因而使非基改產品含有此GMO之可容忍界線。 根據Codex調查,許多GMO的上市審查在歐盟受到延宕,但這些GMO在歐盟以外其實很多都已經被其他國家核准,或歐盟的技術審查單位—食品安全管理局(European Food Safety Authority, EFSA)也已提出正面的安全評估意見,但歐盟執委會卻遲遲未完成行政審查,造成在歐盟進口的食品或飼料中若含有這些GMO,即被認定為未經核准而影響產品之進口。 鑑於歐盟的GMO管理與出口國的GMO管理有重大的制度面差異,Codex認為此一制度面的衝突若不尋求解決,未來將越演越烈,影響的作物範圍也會越來越廣,因而Codex才會思考制定相關的技術指導原則,解決某GMO可能在一個或多個國家已經被核准上市,但在進口國還未經核准上市,而進口非基改食品或飼料中卻含有這些GMO的問題,目前Codex預計在2008年7月提出相關的技術指導原則建議。