美國華盛頓州《我的健康我的資料法》(My Health, My Data,以下簡稱該法)於2024年3月31日生效,該法係於2023年4月27日通過。目標在於保護華盛頓州消費者的健康資料,特別是生殖健康相關資料(data related to reproductive healthcare)。所拘束對象並不在HIPAA之監管範圍內,包括穿戴式裝置(wearables)、特定零售購物和非HIPAA 所規範之遠距醫療服務(telehealth services)所蒐集之資料。
該法最繁瑣合規要求之一為,受監管對象必須在其主頁上公佈消費者健康資料相關隱私權政策(下統稱隱私權政策)連結,連結必須為獨立、特定且不得包含該法所未要求之額外資訊。另針對小型企業,則設有三個月之緩衝時間,即應於 2024 年 6 月 30 日前遵循該要求。
隱私權政策必須清楚且醒目地揭露以下內容:
1. 所蒐集之健康資料類別和蒐集目的,包括將如何使用這些資料;
2. 所蒐集健康資料來源及類別;
3. 共享之健康資料類別;
4. 共享消費者健康資料的第三方或相關企業之類別;以及
5. 消費者如何行使該法所賦予之權利,包括撤銷同意和要求刪除之權利。
最重要的是,除特殊情形外(即1.已揭露其他特定目的2.取得消費者對其他特定目的所為蒐集、使用、揭露之明確同意),受監管對象不得基於隱私權政策中未明確揭露之任何其他目的,蒐集、使用或共享消費者健康資料。
若違反該法相關規定,即被視為違反《華盛頓州消費者保護法》(the Washington Consumer Protection Act),可由華盛頓州總檢察長提出強制執行。另該法為美國第一部保護大量健康資料之法律,顯現對消費者資料保護監管逐漸嚴格之趨勢。
當蘋果公司一宣佈新的產品iPhone將上市,思科系統公司即在星期三(2007年1月10日)控告蘋果侵害iPhone商標權。思科在7年前就已經註冊iPhone的商標,蘋果好幾次企圖向思科表明想要取得iPhone的商標權,但都被思科拒絕。思科資深副總裁馬克‧賈伯斯表示,「蘋果公司的新產品十分具有吸引力,但是他們不應該未經過思科允許,就使用iPhonee商標。」此次提出控告不但保護思科的iPhone商標免於被蘋果使用,且預防公司可能有的損害。 蘋果公司發言人娜塔莉‧凱瑞絲說,我們認為思科的控告十分無聊,而且早已有很多家公司使用iPhone的商標在寬頻電話上,蘋果是第一個將iPhone商標用在手機的公司,我們相信思科宣稱擁有iPhone商標權不足以來對抗蘋果,我們相當有信心能戰勝這場戰。 波士頓律師事務所Bromberg & Sunstein創設者布魯斯‧桑斯坦表示,思科為iPhone商標註冊權人,在法律上具有優勢,蘋果唯一可選擇的抗辯,就是宣稱i系列的商標名稱,例如iPod, iTunes和 iMac,早已造成消費者的混淆,消費者已經無法辨別iPhone是由誰所製造的。桑斯坦進一步說明,蘋果雖宣稱他們在澳洲擁有iPhone商標權,但商標權為屬地主義,因此此項宣稱對於在美國已擁有iPhone商標權的思科並無太大的影響。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
英國Ofcom宣布改善消費者轉換服務業者之流程英國電信管制機關Ofocm於2013年8月宣布了新的措施,目的在幫助消費者轉換其電話和寬頻服務業者時,更加輕鬆與方便。 當消費者計畫轉換其寬頻服務業者時,時常面臨著必須許多不同業者的手續、流程,包含轉換與被轉換的業者,以及中介服務的業者。如此複雜的轉換過程造成混亂,也容易讓消費者認為轉換服務業者是很麻煩的,某種程度上阻礙消費者選擇較佳服務業者的機會。 Ofcom的研究指出,在轉換業者的過程中,最大的阻礙在於,消費者有時覺得不好意思向目前提供服務的業者提出轉換的申請,在這樣的過程中,現在的業者有很多的主導權,例如對於轉換過程的遲延或服務的中斷,均導致消費者承受不必要的拖累。 為了解決這些問題,Ofcom決定,未來當消費者計畫轉換服務業者時,只需要遵循一個單一的轉換程序,由新的服務業者代表消費者進行此一過程。 這個「由遷入供應商主導(gaining provider led,GPL)」的過程中,已廣泛的是用於電話和寬頻服務之轉換程序,消費者將不再需要聯繫他們現有的服務業者、收到一個編號,以轉換業者。 Ofcom還設置了額外的措施,以幫助防止消費者在轉換的過程中遭遇服務的中斷、或是有未經消費者同意的轉換。 一個明確的和改進的切換過程中,以幫助消費者。 Ofcom在既有GPL程序的基礎上進行改善,制訂單一的流程,強化流程的監督,為消費者提供增值收益。 根據Ofcom初步制訂的單一轉換流程,服務業者必須遵守以下指示: ‧留存每一位消費者轉換服務的相關同意記錄,以保護消費者在不知情之下,被轉換到不同的業者; ‧防止消費者轉換時出現服務的空窗期,特別是電話和寬頻服務的轉換; ‧給消費者提供關於業者服務品質的資訊,如提前終止服務時,可能需負擔的額外費用變化,使消費者可以做出明智的決定。 Ofcom計畫於2014年初將細部程序制訂並執行,並可能提出下一階段的工作,涵蓋兩個關鍵領域: ‧持續與業者溝通,確保消費者得到更好的保護; ‧進一步改進電話、不同類型的寬頻服務、不同類型的網路之間的轉換(例如Cable網路)
非評論、批判之著作若具新目的之轉化亦屬合理使用範疇之新見解 - Patrick Cariou v. Richard Prince美國聯邦第二巡迴上訴法院針對Patrick Cariou v. Richard Prince一案做出侵害著作權之合理使用判斷新見解,合理使用之目的主要為平衡著作權與美國憲法第一修正案之間的衝突,故1976年著作權法第107條中編寫有關合理使用之條文─在第106和第106A之規定外,對一受著作權保護作品的合理使用,無論是透過複製、錄音或其他任何上述規定中所提到的手段,以用作批評、評論、新聞報導、教學、學術交流或研究之目的,不屬於侵權。上訴法院認為被告Prince使用雖不符合批評、評論、新聞報導、教學、學術及研究等,卻是另有目的,可構成合理使用,更進一步指出被告的創意方法、表現形式等都與原告作品本質上不同,甚至還比原作新穎,因此,在轉化測試法則上建立了若以不同美學表達且加入挪用藝術手法的話,即使不具批判卻另有目的並加入新元素於創作,使原作改變之轉化,則構成合理使用。至於轉化測試法則確立於1994年的Campbell案,最高法院指出戲謔仿作可藉由諷刺原著作而轉化成與原著作不同的另一著作。 此案可謂針對合理使用於判定著作權侵害案件時,合理使用原則第一項因素成立轉化測試法則與否之新指標。著作權合理使用原則發展亦可觀察出美國有逐漸將判斷標準擴大之趨勢,而轉化測試法則之發展亦將持續追蹤之。