美國華盛頓州《我的健康我的資料法》(My Health, My Data,以下簡稱該法)於2024年3月31日生效,該法係於2023年4月27日通過。目標在於保護華盛頓州消費者的健康資料,特別是生殖健康相關資料(data related to reproductive healthcare)。所拘束對象並不在HIPAA之監管範圍內,包括穿戴式裝置(wearables)、特定零售購物和非HIPAA 所規範之遠距醫療服務(telehealth services)所蒐集之資料。
該法最繁瑣合規要求之一為,受監管對象必須在其主頁上公佈消費者健康資料相關隱私權政策(下統稱隱私權政策)連結,連結必須為獨立、特定且不得包含該法所未要求之額外資訊。另針對小型企業,則設有三個月之緩衝時間,即應於 2024 年 6 月 30 日前遵循該要求。
隱私權政策必須清楚且醒目地揭露以下內容:
1. 所蒐集之健康資料類別和蒐集目的,包括將如何使用這些資料;
2. 所蒐集健康資料來源及類別;
3. 共享之健康資料類別;
4. 共享消費者健康資料的第三方或相關企業之類別;以及
5. 消費者如何行使該法所賦予之權利,包括撤銷同意和要求刪除之權利。
最重要的是,除特殊情形外(即1.已揭露其他特定目的2.取得消費者對其他特定目的所為蒐集、使用、揭露之明確同意),受監管對象不得基於隱私權政策中未明確揭露之任何其他目的,蒐集、使用或共享消費者健康資料。
若違反該法相關規定,即被視為違反《華盛頓州消費者保護法》(the Washington Consumer Protection Act),可由華盛頓州總檢察長提出強制執行。另該法為美國第一部保護大量健康資料之法律,顯現對消費者資料保護監管逐漸嚴格之趨勢。
中國國家互聯網信息辦公室於2025年2月12日公布《個人信息保護合規審計管理辦法》(下稱《辦法》)及其配套指引,自2025年5月1日正式實施。《辦法》及指引的發布,旨在落實《個人信息保護法》中的稽核規定,完善個資合規監督架構,為企業提供執行審計的制度依據。 《辦法》區分合規審計為兩大形式:企業可自行或委託專業機構定期進行審計;另當主管機關發現高風險處理活動或發生重大資料外洩事件時,有權要求企業限期完成外部審計,並提交報告。針對處理規模較大的企業,《辦法》特別規定,凡處理超過1,000萬人個資的業者,須至少每兩年完成一次審計。 針對大規模蒐用個資企業,《辦法》亦強化其配合責任,對於處理超過100萬人資料的企業,須設置個資保護負責人;對大型平台服務業者,則須成立主要由外部人員主導的獨立監督機構,以確保審計客觀性。 在審計執行層面,《辦法》對第三方審計機構的條件、獨立性與保密義務提出具體要求,並禁止將合規審計轉委託,防堵審計品質不一,或個資分享過程增加外洩風險。同時,也規範同一機構或審計負責人不得連續三次審計同一對象,以強化審計公正性。 《合規審計指引》進一步列出具體審查項目,包括處理合法性、告知義務、資料共享、敏感及未成年個資保護、境外傳輸、自動化決策與安全措施等,協助企業全面落實個資合規審查。
英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。 ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。 使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。 ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。
OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。