The use of automated facial recognition technology and supervision mechanism in UK

The use of automated facial recognition technology and supervision mechanism in UK

I. Introduction

  Automatic facial recognition (AFR) technology has developed rapidly in recent years, and it can identify target people in a short time. The UK Home Office announced the "Biometrics Strategy" on June 28, 2018, saying that AFR technology will be introduced in the law enforcement, and the Home Office will also actively cooperate with other agencies to establish a new oversight and advisory board in order to maintain public trust. AFR technology can improve law enforcement work, but its use will increase the risk of intruding into individual liberty and privacy.

  This article focuses on the application of AFR technology proposed by the UK Home Office. The first part of this article describes the use of AFR technology by the police. The second part focuses on the supervision mechanism proposed by the Home Office in the Biometrics Strategy. However, because the use of AFR technology is still controversial, this article will sort out the key issues of follow-up development through the opinions of the public and private sectors. The overview of the discussion of AFR technology used by police agencies would be helpful for further policy formulation.

II. Overview of the strategy of AFR technology used by the UK police

  According to the Home Office’s Biometrics Strategy, the AFR technology will be used in law enforcement, passports and immigration and national security to protect the public and make these public services more efficient[1]. Since 2017 the UK police have worked with tech companies in testing the AFR technology, at public events like Notting Hill Carnival or big football matches[2].

  In practice, AFR technology is deployed with mobile or fixed camera systems. When a face image is captured through the camera, it is passed to the recognition software for identification in real time. Then, the AFR system will process if there is a ‘match’ and the alarm would solicit an operator’s attention to verify the match and execute the appropriate action[3]. For example, South Wales Police have used AFR system to compare images of people in crowds attending events with pre-determined watch lists of suspected mobile phone thieves[4]. In the future, the police may also compare potential suspects against images from closed-circuit television cameras (CCTV) or mobile phone footage for evidential and investigatory purposes[5].

  The AFR system may use as tools of crime prevention, more than as a form of crime detection[6]. However, the uses of AFR technology are seen as dangerous and intrusive by the UK public[7]. For one thing, it could cause serious harm to democracy and human rights if the police agency misuses AFR technology. For another, it could have a chilling effect on civil society and people may keep self-censoring lawful behavior under constant surveillance[8].

III. The supervision mechanism of AFR technology

  To maintaining public trust, there must be a supervision mechanism to oversight the use of AFR technology in law enforcement. The UK Home Office indicates that the use of AFR technology is governed by a number of codes of practice including Police and Criminal Evidence Act 1984, Surveillance Camera Code of Practice and the Information Commissioner’s Office (ICO)’s Code of Practice for surveillance cameras[9].

(I) Police and Criminal Evidence Act 1984

  The Police and Criminal Evidence Act (PACE) 1984 lays down police powers to obtain and use biometric data, such as collecting DNA and fingerprints from people arrested for a recordable offence. The PACE allows law enforcement agencies proceeding identification to find out people related to crime for criminal and national security purposes. Therefore, for the investigation, detection and prevention tasks related to crime and terrorist activities, the police can collect the facial image of the suspect, which can also be interpreted as the scope of authorization of the  PACE.

(II) Surveillance Camera Code of Practice

  The use of CCTV in public places has interfered with the rights of the people, so the Protection of Freedoms Act 2012 requires the establishment of an independent Surveillance Camera Commissioner (SCC) for supervision. The Surveillance Camera Code of Practice  proposed by the SCC sets out 12 principles for guiding the operation and use of surveillance camera systems. The 12 guiding principles are as follows[10]:

A. Use of a surveillance camera system must always be for a specified purpose which is in pursuit of a legitimate aim and necessary to meet an identified pressing need.

B. The use of a surveillance camera system must take into account its effect on individuals and their privacy, with regular reviews to ensure its use remains justified.

C. There must be as much transparency in the use of a surveillance camera system as possible, including a published contact point for access to information and complaints.

D. There must be clear responsibility and accountability for all surveillance camera system activities including images and information collected, held and used.

E. Clear rules, policies and procedures must be in place before a surveillance camera system is used, and these must be communicated to all who need to comply with them.

F. No more images and information should be stored than that which is strictly required for the stated purpose of a surveillance camera system, and such images and information should be deleted once their purposes have been discharged.

G. Access to retained images and information should be restricted and there must be clearly defined rules on who can gain access and for what purpose such access is granted; the disclosure of images and information should only take place when it is necessary for such a purpose or for law enforcement purposes.

H. Surveillance camera system operators should consider any approved operational, technical and competency standards relevant to a system and its purpose and work to meet and maintain those standards.

I. Surveillance camera system images and information should be subject to appropriate security measures to safeguard against unauthorised access and use.

J. There should be effective review and audit mechanisms to ensure legal requirements, policies and standards are complied with in practice, and regular reports should be published.

K. When the use of a surveillance camera system is in pursuit of a legitimate aim, and there is a pressing need for its use, it should then be used in the most effective way to support public safety and law enforcement with the aim of processing images and information of evidential value.

L. Any information used to support a surveillance camera system which compares against a reference database for matching purposes should be accurate and kept up to date.

(III) ICO’s Code of Practice for surveillance cameras

  It must need to pay attention to the personal data and privacy protection during the use of surveillance camera systems and AFR technology. The ICO issued its Code of Practice for surveillance cameras under the Data Protection Act 1998 to explain the legal requirements operators of surveillance cameras. The key points of ICO’s Code of Practice for surveillance cameras are summarized as follows[11]:

A. The use time of the surveillance camera systems should be carefully evaluated and adjusted. It is recommended to regularly evaluate whether it is necessary and proportionate to continue using it.

B. A police force should ensure an effective administration of surveillance camera systems deciding who has responsibility for the control of personal information, what is to be recorded, how the information should be used and to whom it may be disclosed.

C. Recorded material should be stored in a safe way to ensure that personal information can be used effectively for its intended purpose. In addition, the information may be considered to be encrypted if necessary.

D. Disclosure of information from surveillance systems must be controlled and consistent with the purposes for which the system was established.

E. Individuals whose information is recoded have a right to be provided with that information or view that information. The ICO recommends that information must be provided promptly and within no longer than 40 calendar days of receiving a request.

F. The minimum and maximum retention periods of recoded material is not prescribed in the Data Protection Act 1998, but it should not be kept for longer than is necessary and should be the shortest period necessary to serve the purposes for which the system was established.

(IV) A new oversight and advisory board

  In addition to the aforementioned regulations and guidance, the UK Home Office mentioned that it will work closely with related authorities, including ICO, SCC, Biometrics Commissioner (BC), and Forensic Science Regulator (FSR) to establish a new oversight and advisory board to coordinate consideration of law enforcement’s use of facial images and facial recognition systems[12].

  To sum up, it is estimated that the use of AFR technology by law enforcement has been abided by existing regulations and guidance. Firstly, surveillance camera systems must be used on the purposes for which the system was established. Secondly, clear responsibility and accountability mechanisms should be ensured. Thirdly, individuals whose information is recoded have the right to request access to relevant information. In the future, the new oversight and advisory board will be asked to consider issues relating to law enforcement’s use of AFR technology with greater transparency.

IV. Follow-up key issues for the use of AFR technology

  Regarding to the UK Home Office’s Biometrics Strategy, members of independent agencies such as ICO, BC, SCC, as well as civil society, believe that there are still many deficiencies, the relevant discussions are summarized as follows:

(I) The necessity of using AFR technology

  Elizabeth Denham, ICO Commissioner, called for looking at the use of AFR technology carefully, because AFR is an intrusive technology and can increase the risk of intruding into our privacy. Therefore, for the use of AFR technology to be legal, the UK police must have clear evidence to demonstrate that the use of AFR technology in public space is effective in resolving the problem that it aims to address[13].

  The Home Office has pledged to undertake Data Protection Impact Assessments (DPIAs) before introducing AFR technology, including the purpose and legal basis, the framework applies to the organization using the biometrics, the necessity and proportionality and so on.

(II)The limitations of using facial image data

  The UK police can collect, process and use personal data based on the need for crime prevention, investigation and prosecution. In order to secure the use of biometric information, the BC was established under the Protection of Freedoms Act 2012. The mission of the BC is to regulate the use of biometric information, provide protection from disproportionate enforcement action, and limit the application of surveillance and counter-terrorism powers.

  However, the BC’s powers do not presently extend to other forms of biometric information other than DNA or fingerprints[14]. The BC has expressed concern that while the use of biometric data may well be in the public interest for law enforcement purposes and to support other government functions, the public benefit must be balanced against loss of privacy. Hence, legislation should be carried to decide that crucial question, instead of depending on the BC’s case feedback[15].

  Because biometric data is especially sensitive and most intrusive of individual privacy, it seems that a governance framework should be required and will make decisions of the use of facial images by the police.

(III) Database management and transparency

  For the application of AFR technology, the scope of biometric database is a dispute issue in the UK. It is worth mentioning that the British people feel distrust of the criminal database held by the police. When someone is arrested and detained by the police, the police will take photos of the suspect’s face. However, unlike fingerprints and DNA, even if the person is not sued, their facial images are not automatically deleted from the police biometric database[16].

  South Wales Police have used AFR technology to compare facial images of people in crowds attending major public events with pre-determined watch lists of suspected mobile phone thieves in the AFR field test. Although the watch lists are created for time-limited and specific purposes, the inclusion of suspects who could possibly be innocent people still causes public panic.

  Elizabeth Denham warned that there should be a transparency system about retaining facial images of those arrested but not charged for certain offences[17]. Therefore, in the future the UK Home Office may need to establish a transparent system of AFR biometric database and related supervision mechanism.

(IV) Accuracy and identification errors

  In addition to worrying about infringing personal privacy, the low accuracy of AFR technology is another reason many people oppose the use of AFR technology by police agencies. Silkie Carlo, director of Big Brother Watch, said the police must immediately stop using the AFR technology and avoid mistaking thousands of innocent citizens as criminals; Paul Wiles, Biometrics Commissioner, also called for legislation to manage AFR technology because of its accuracy is too low and the use of AFR technology should be tested and passed external peer review[18].

  In the Home Office’s Biometric Strategy, the scientific quality standards for AFR technology will be established jointly with the FSR, an independent agency under the Home Office. In other words, the Home Office plans to extend the existing forensics science regime to regulate AFR technology.

  Therefore, the FSR has worked with the SCC to develop standards relevant to digital forensics. The UK government has not yet seen specific standards for regulating the accuracy of AFR technology at the present stage.

V. Conclusion

  From the discussion of the public and private sectors in the UK, we can summarize some rules for the use of AFR technology. Firstly, before the application of AFR technology, it is necessary to complete the pre-assessment to ensure the benefits to the whole society. Secondly, there is the possibility of identifying errors in AFR technology. Therefore, in order to maintain the confidence and trust of the people, the relevant scientific standards should be set up first to test the system accuracy. Thirdly, the AFR system should be regarded as an assisting tool for police enforcement in the initial stage. In other words, the information analyzed by the AFR system should still be judged by law enforcement officials, and the police officers should take the responsibilities.

  In order to balance the protection of public interest and basic human rights, the use of biometric data in the AFR technology should be regulated by a special law other than the regulations of surveillance camera and data protection. The scope of the identification database is also a key point, and it may need legislators’ approval to collect and store the facial image data of innocent people. Last but not least, the use of the AFR system should be transparent and the victims of human rights violations can seek appeal.


[1] UK Home Office, Biometrics Strategy, Jun. 28, 2018, https://www.gov.uk/government/publications/home-office-biometrics-strategy (last visited Aug. 09, 2018), at 7.

[2] Big Brother Watch, FACE OFF CAMPAIGN: STOP THE MET POLICE USING AUTHORITARIAN FACIAL RECOGNITION CAMERAS, https://bigbrotherwatch.org.uk/all-campaigns/face-off-campaign/ (last visited Aug. 16, 2018).

[3] Lucas Introna & David Wood, Picturing algorithmic surveillance: the politics of facial recognition systems, Surveillance & Society, 2(2/3), 177-198 (2004).

[4] Supra note 1, at 12.

[5] Id, at 25.

[6] Michael Bromby, Computerised Facial Recognition Systems: The Surrounding Legal Problems (Sep. 2006)(LL.M Dissertation Faculty of Law University of Edinburgh), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.7339&rep=rep1&type=pdf , at 3.

[7] Owen Bowcott, Police face legal action over use of facial recognition cameras, The Guardian, Jun. 14, 2018, https://www.theguardian.com/technology/2018/jun/14/police-face-legal-action-over-use-of-facial-recognition-cameras (last visited Aug. 09, 2018).

[8] Martha Spurrier, Facial recognition is not just useless. In police hands, it is dangerous, The Guardian, May 16, 2018, https://www.theguardian.com/commentisfree/2018/may/16/facial-recognition-useless-police-dangerous-met-inaccurate (last visited Aug. 17, 2018).

[9] Supra note 1, at 12.

[10] Surveillance Camera Commissioner, Surveillance camera code of practice, Oct. 28, 2014, https://www.gov.uk/government/publications/surveillance-camera-code-of-practice (last visited Aug. 17, 2018).

[11] UK Information Commissioner’s Office, In the picture: A data protection code of practice for surveillance cameras and personal information, Jun. 09, 2017, https://ico.org.uk/for-organisations/guide-to-data-protection/encryption/scenarios/cctv/ (last visited Aug. 10, 2018).

[12] Supra note 1, at 13.

[13] Elizabeth Denham, Blog: facial recognition technology and law enforcement, Information Commissioner's Office, May 14, 2018, https://ico.org.uk/about-the-ico/news-and-events/blog-facial-recognition-technology-and-law-enforcement/ (last visited Aug. 14, 2018).

[14] Monique Mann & Marcus Smith, Automated Facial Recognition Technology: Recent Developments and Approaches to Oversight, Automated Facial Recognition Technology, 10(1), 140 (2017).

[15] Biometrics Commissioner, Biometrics Commissioner’s response to the Home Office Biometrics Strategy, Jun. 28, 2018, https://www.gov.uk/government/news/biometrics-commissioners-response-to-the-home-office-biometrics-strategy (last visited Aug. 15, 2018).

[16] Supra note 2.

[17] Supra note 13.

[18] Jon Sharman, Metropolitan Police's facial recognition technology 98% inaccurate, figures show, INDEPENDENT, May 13, 2018, https://www.independent.co.uk/news/uk/home-news/met-police-facial-recognition-success-south-wales-trial-home-office-false-positive-a8345036.html (last visited Aug. 09, 2018).

Links
Download
※The use of automated facial recognition technology and supervision mechanism in UK,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=168&d=8347 (Date:2024/07/27)
Quote this paper
You may be interested
Suggestions for MOEA Trial Program of Voluntary Base Green Electricity Framework

On March 6, 2014, The Energy Bureau of Ministry of Economic Affairs has published a pre-announcement on a Trial Program of Voluntary Base Green Electricity Framework (hereafter the Trial Program) and consulted on public opinion. In light of the content of the Trial Program, STLI provide the following suggestions for future planning of related policy structure. The institution of green electricity as established by the Trial Program is one of the policies for promoting renewable energy. Despite its nature of a trial, it is suggested that a policy design with a more options will be beneficial to the promotion of renewable energy, in light of various measures that have been undertaken by different countries. According to the Trial Program, the planned price rate of the green electricity is set on the basis of the total sum that the electricity subsidy to be paid by the Renewable Energy Development Fund divided by the total sum of electricity generated reported by Tai Power Company. The Ministry of Economic Affairs will adjust the price rate of the green electricity on the base of both how many users subscribe to the green electricity and the price rate of international green electricity market rate and, then announce the price rate in October of each year if not otherwise designated. In addition, according to the planned Trial Program, the unit for the subscription of green electricity is 100 kW·h. It is further reported that the current planned price rate for green electricity is 1.06 NTD/ kW·h. And it shall be 3.95 NTD/ kW·h if adding up with the original price rate, with an 37% increase in price per kW·h. In terms of the existing content of the Trial Program, only single price rate will be offered during the trial period. In this regard, we take the view that it would be beneficial to take into account similar approaches that have been taken by other countries. In Germany, for instance, the furtherance of renewable energy is achieved by the obligatory charge(EEG Umlage)together with the voluntary green electricity program provided by the private electricity retail sectors. According to German Ministry of Economics and Energy (BMWi), the electricity price that the German public pays includes three parts: (1)the cost of the purchase and distribution of the electricity, including the margin of the electricity provider(2)regulated network fees, including those for the operation as well as for the measurement works of the meters(3)charges imposed by the government, including tax and the abovementioned obligatory charge for renewable energy(EEG Umlage), as prescribed by the Act on Renewable Energy (Gesetz für den Vorrang Erneuerbarer Energien, also known as Erneuerbare-Energien-Gesetz - EEG). In terms of how it is implemented on the ground, an example of the green electricity price menu program from the German electricity retail company, Vattenfall, is given in the following. In all price menu programs provided by Vattenfall in Berlin, for instance, 29.4% of the electricity comes from renewable energy as a result of the implementation of the Act on Renewable Energy. Asides from the abovementioned percentage as facilitated by the existing obligatory measures, the electricity retail companies in Germany further provide the price menus that are “greener”. For example, among the options provided by Vattenfall(Chart I), in terms of the 12-month program, one can choose the menu which consist of 39.4% of renewable energy, with the price of 0.2642 Euro/ kW·h(about 10.96 NTD/ kW·h). One can also opt for a menu of which the energy supply comes from 100% of renewable energy, with the price of 0.281 Euro/ kW·h(about 11.66 NTD/ kW·h) Chart I : Green Electricity Price Menus provided by Vattenfall in Berlin, Germany Percentage of Renewable Energy Supply Percentage of Renewable Energy Supply Electricity Price 12-month program 39.4% 0.2642 Euro/ kW·h(about 10.96 NTD/ kW·h) All renewable energy program 100% 0.281 Euro/ kW·h(about 11.66 NTD/ kW·h) Source:Vattenfall website, translated and reorganized by STLI, April 214. In addition, Australia also has similar programs on green electricity that is voluntary-base and with the goal of promoting renewable energy, reducing carbon emission, and transforming energy economy. Since 1997, the GreenPower in Australia is in charge of audition and certification of the retail companies and power plants on green electricity. The Australian model uses the certification mechanism conducted by independent third party, to ensure the green electricity purchased by end users in compliance with specific standards. As for the options for the price menu, take the programs of green electricity offered by the Australian retail company Origin Energy for example, user can choose 6 kinds of different programs, which are composed by renewable energy supply of respectively 10%, 20%, 25%, 50%, 75%, and 100%, at various price rates (shown in Chart II). Chart II Australian Green Electricity Programs provided by Origin Energy Percentage of renewable Energy Electricity Price per kW·h 0 0.268 AUD(About 7.52 NTD) 10% 0.274868 AUD(About 7.69 NTD) 20% 0.28006 AUD(About 7.84 NTD) 25% 0.28292 AUD(About 7.92 NTD) 50% 0.2838 AUD(About 7.95 NTD) 100% 0.2992 AUD(About 8.37 NTD) Source:Origin Energy website, translated and reorganized by STLI, April 214. Given the information above, it can thus be inferred that the international mechanism for the promotion of green electricity often include a variety of price menus, providing the user more options. Such as two difference programs offered by Vattenfall in Germany and six various rates for green electricity offered by Origin Energy in Australia. It is the suggestion of present brief that the Trial Program can reference these international examples and try to offer the users a greater flexibility in choosing the most suitable programs for themselves.

Introducing and analyzing the Scope and Benefits of the Regulation「Statute for Upgrading Industries」in The Biotechnology Industry in Taiwan

The recent important regulation for supporting the biopharmaceutical industry in Taiwan has been the 「Statute for Upgrading Industries」 (hereinafter referred to as 「the Statute」).The main purpose of the Statue is for upgrading all industry for future economic development, so it applies to various industries, ranging from agriculture, industrial and service businesses. In other words, the Statute does not offer incentive measures to biopharmaceutical industry in particular, but focuses on promoting the industry development in general. Statute for Upgrading Industry and Related Regulations Generally speaking, the Statute has a widespread influence on industry development in Taiwan. The incentive measures provided in the Statute is complicated and covered other related regulations under its legal framework. Thus, the article will be taking a multi-facet perspective in discussing the how Statute relates to the biopharmaceutical industry. 1 、 Scope of Application According to Article 1 of the Statute, the term 「industries」 refers to agricultural, industrial and service businesses. Consequently, nearly all kinds of industries fall under this definition, and the Statute is applicable to all of them. Moreover, in order to promote the development and application of emerging technology as well as cultivating the recognized industry, the Statute provides much more favorable terms to these industries. These emerging and major strategic industries includes computer, communication and consumer electronics (3C), precise mechanics and automation, aerospace, biomedical and chemical production, green technology, material science, nanotechnology, security and other product or service recognized by the Executive Yuan. 2 、 Tax Benefits The Statute offers several types of tax benefits, so the industry could receive sufficient reward in every way it could, and promote a sound cycle in creating new values through these benefits. (1) Benefits for the purchase of automation equipment The said procured equipment and technology over NTD600, 000 may credit a certain percentage of the investment against the amount of profit-seeking enterprise income tax payable for the then current year. For the purchase of production technology, 5% may be credited. For the purchase of equipment, 7% may be credited. And any investment plan that includes the purchasing of equipment for automation can qualify for a low-interest preferential loan. Besides, for science-based industrial company imported overseas equipment that is not manufacture by local manufactures, from January 1, 2002, the imported equipment shall be exempted from import and business tax. And if the company is a bonded factory, the raw materials to be imported from abroad by it shall also be exempt from import duties and business tax. (2) Benefits for R&D expenditure Expenditure concurred for developing new products, improving production technology, or improving label-providing technology may credit 30%of the investment against the amount of profit-seeking enterprise income tax payable for the then current year. Research expenditures of the current year exceeding the average research expenditure for the past two years, the excess in research expenditure shall be 50% deductible. Instruments and equipments purchased by for exclusive R&D purpose, experimentation, or quality inspection may be accelerated to two years. At last, Biotech and New Pharmaceuticals Company engages in R&D activities, such as Contract research Organization (CRO), may credit 30% of the investment against the amount of profit-seeking enterprise income tax payable. (3) Personnel Training When a company trained staff and registered for business-related course, may credit 30% of the training cost against the amount of profit-seeking enterprise income tax payable for the then current year. Where training expenses for the current year exceeds the two-year average, 50% of the excess portion may be credited. (4) Benefit for Newly Emerging Strategic Industries Corporate shareholders invest in newly emerging strategic industries are entitled to select one of the following tax benefits: A profit seeking enterprise may credit up to 20% of the price paid for acquisition of such stock against the profit seeking enterprise income tax. An individual may credit up to 10%. As of January and once every year, there will be a 1% reduction of the price paid for acquisition of such stock against the consolidated income tax payable in the then current year. A company, within two years from the beginning date for payment of the stock price by its shareholders, selects, with the approval of its shareholder meeting, the application of an exemption from profit-seeking enterprise income tax and waives the shareholders investment credit against payable income tax as mentioned above. However, that once the selection is made, no changes shall be allowed. (5) Benefits for Investment in Equipment or Technology Used for Pollution Control To prevent our environment from further pollution, the Government offers tax benefits to reward companies in making improvements. Investment in equipment or technology used for pollution control may credit 7% of the equipment expenditure, and 5% of the expenditure on technology against the amount of profit-seeking enterprise income tax payable for the then current year. For any equipment that has been verified in use and specialized in air pollution control, noise pollution control, vibration control, water pollution control, environmental surveillance and waste disposal, shall be exempt from import duties and business tax. And for investment plans that planned implementation of energy saving systems can apply for a low interest loan. (6) Incentive for Operation Headquarter To encourage companies to utilize worldwide resources and set up international operation network, if they established operation headquarters within the territory of the Republic of China reaching a specific size and bringing about significant economic benefit, their following incomes shall be exempted from profit-seeking enterprise income tax: The income derived from provision of management services or R&D services. The royalty payment received under its investments to its affiliates abroad. The investment return and asset disposal received under its investment to its affiliates abroad. (7) Exchange of Technology for Stock Option The emerging-industrycompany recognized by government, upon adoption of a resolution by a majority voting of the directors present at a meeting of its board of directors attended by two-thirds of the directors of the company, may issue stock options to corporation or individual in exchange for authorization or transfer of patent and technologies. (8) Deferral of Taxes on the Exchange of Technology for Shares Taxes on income earned by investors from the acquisition of shares in emerging-industry companies in exchange for technology will be deferred for five years, on condition that the shares exchanged for technology amount to more than 20% of the company's total stock equity and that the number of persons who obtain shares in exchange for technology does not exceed five. 3 、 Technical Assistance and Capital Investment The rapid industry development has been closely tied to the infusion of funds. In addition to tax benefits, the Statute incorporates regulations especially for technical assistance and capital investment as below: (1) In order to introduce or transfer advanced technologies, technical organization formed with the contribution of government shall provide appropriate technical assistance as required. (2) In order to advance technologies, enhance R&D activities and further upgrade industries, the relevant central government authorities in charge of end enterprises may promote the implementation of industrial and technological projects by providing subsidies to such R&D projects. (3) In order to assist the start-up of domestic small-medium technological enterprises and the overall upgrading of the entire industries, guidance and assistance shall be provided for the development of venture capital enterprises.

The Study of Estonian Human Genes Database

I. Introduction The human genes database or human genome project, the product under the policy of biotechnology no matter in a developed or developing country, has been paid more attention by a government and an ordinary people gradually. The construction of human genes database or human genome project, which is not only related to a country’s innovation on biotechnology, but also concerns the promotion of a country’s medical quality, the construction of medical care system, and the advantages brought by the usage of bio-information stored in human genes database or from human genome project. However, even though every country has a high interest in setting up human genes database or performing human genome project, the issues concerning the purposes of related biotechnology policies, the distribution of advantages and risks and the management of bio-information, since each country has different recognition upon human genes database or human genome project and has varied standards of protecting human basic rights, there would be a totally difference upon planning biotechnology policies or forming the related systems. Right now, the countries that vigorously discuss human genes database or practice human genome project include England, Iceland, Norway, Sweden, Latvia and Estonia. Estonia, which is the country around the Baltic Sea, has planned to set up its own human genes database in order to draw attention from other advanced countries, to attract intelligent international researchers or research groups, and to be in the lead in the area of biotechnology. To sum up, the purpose of constructing Estonian human genes database was to collect the genes and health information of nearly 70% Estonia’s population and to encourage bio-research and promote medical quality. II. The Origin of Estonian Human Genes Database The construction of Estonian human genes database started from Estonian Genome Project (EGP). This project was advocated by the professor of biotechnology Andres Metspalu at Tartu University in Estonia, and he proposed the idea of setting up Estonian human genes database in 1999. The purposes of EGP not only tried to make the economy of Estonia shift from low-cost manufacturing and heavy industry to an advanced technological economy, but also attempted to draw other countries’ attention and to increase the opportunity of making international bio-researches, and then promoted the development of biotechnology and assisted in building the system of medical care in Estonia. EGP started from the agreement made between Estonian government and Eesti Geenikeskus (Estonian Genome Foundation) in March, 1999. Estonian Genome Foundation was a non-profit organization formed by Estonian scientists, doctors and politicians, and its original purposes were to support genes researches, assist in proceeding any project of biotechnology and to set up EGP. The original goals of constructing EGP were “(a) reaching a new level in health care, reduction of costs, and more effective health care, (b) improving knowledge of individuals, genotype-based risk assessment and preventive medicine, and helping the next generation, (c) increasing competitiveness of Estonia – developing infrastructure, investments into high-technology, well-paid jobs, and science intensive products and services, (d) [constructing] better management of health databases (phenotype/genotype database), (e) … [supporting]… economic development through improving gene technology that opens cooperation possibilities and creates synergy between different fields (e.g., gene technology, IT, agriculture, health care)”1. III. The Way of Constructing Estonian Human Genes Database In order to ensure that Estonian human genes database could be operated properly and reasonably in the perspectives of law, ethics and society in Estonia, the Estonian parliament followed the step of Iceland to enact “Human Genes Research Act” (HGRA) via a special legislative process to regulate its human genes database in 2000. HGRA not only authorizes the chief processor to manage Estonian human genes database, but also regulates the issues with regard to the procedure of donation, the maintenance and building of human genes database, the organization of making researches, the confidential identity of donator or patient, the discrimination of genes, and so on. Since the construction of Estonian human genes database might bring the conflicts of different points of view upon the database in Estonia, in order to “avoid fragmentation of societal solidarity and ensure public acceptability and respectability”2 , HGRA adopted international standards regulating a genes research to be a norm of maintaining and building the database. Those standards include UNESCO Universal Declaration on the Human Genome and Human Rights (1997) and the Council of Europe’s Convention on Human Rights and Biomedicine (1997). The purpose of enacting HGRA is mainly to encourage and promote genes researches in Estonia via building Estonian human genes database. By means of utilizing the bio-information stored in the database, it can generate “more exact and efficient drug development, new diagnostic tests, improved individualized treatment and determination of risks of the development of a disease in the future”3 . In order to achieve the above objectives, HGRA primarily puts emphasis on several aspects. Those aspects include providing stronger protection on confidential identity of donators or patients, caring for their privacy, ensuring their autonomy to make donations, and avoiding any possibility that discrimination may happen because of the disclosure of donators’ or patients’ genes information. 1.HERBERT GOTTWEIS & ALAN PETERSEN, BIOBANKS – GOVERNANCE IN COMPARATIVE PERSPECTIVE 59 (2008). 2.Andres Rannamae, Populations and Genetics – Legal and Socio-Ethical Perspectives, in Estonian Genome Porject – Large Scale Health Status Description and DNA Collection 18, 21 (Bartha Maria Knoppers et al. eds., 2003. 3.REMIGIUS N. NWABUEZE, BIOTECHNOLOGY AND THE CHALLENGE OF PROPERTY – PROPERTY RIGHTS IN DEAD BODIES, BODY PARTS, AND GENETIC INFORMATION, 163 (2007).

Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations

Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations 2023/08/18 Since the launch of ChatGPT on November 30, 2022, the technology has been disrupting industries, shifting the way things used to work, bringing benefits but also problems. Several law suits were filed by artists, writers and voice actors in the US, claiming that the usage of copyright materials in training generative AI violates their copyright.[1] AI deepfake, hallucination and bias has also become the center of discussion, as the generation of fake news, false information, and biased decisions could deeply affect human rights and the society as a whole.[2] To retain the benefits of AI without causing damage to the society, regulators around the world have been accelerating their pace in establishing AI regulations. However, with the technology evolving at such speed and uncertainty, there is a lack of consensus on which regulation approach can effectively safeguard human rights while promoting innovation. This article will provide an overview of current AI regulation developments around the world, a preliminary analysis of the pros and cons of different regulation approaches, and point out some other elements that regulators should consider. I. An overview of the current AI regulation landscape around the world The EU has its lead in legislation, with its parliament adopting its position on the AI ACT in June 2023, heading into trilogue meetings that aim to reach an agreement by the end of this year.[3] China has also announced its draft National AI ACT, scheduled to enter its National People's Congress before the end of 2023.[4] It already has several administration rules in place, such as the 2021 regulation on recommendation algorithms, the 2022 rules for deep synthesis, and the 2023 draft rules on generative AI.[5] Some other countries have been taking a softer approach, preferring voluntary guidelines and testing schemes. The UK published its AI regulation plans in March, seeking views on its sectoral guideline-based pro-innovation regulation approach.[6] To minimize uncertainty for companies, it proposed a set of regulatory principles to ensure that government bodies develop guidelines in a consistent manner.[7] The US National Institute of Standards and Technology (NIST) released the AI Risk Management Framework in January[8], with a non-binding Blueprint for an AI Bill of Rights published in October 2022, providing guidance on the design and use of AI with a set of principles.[9] It is important to take note that some States have drafted regulations on specific subjects, such as New York City’s Final Regulations on Use of AI in Hiring and Promotion came into force in July 2023.[10] Singapore launched the world’s first AI testing framework and toolkit international pilot in May 2022, with the assistance of AWS, DBS Bank, Google, Meta, Microsoft, Singapore Airlines, etc. After a year of testing, it open-sourced the software toolkit in July 2023, to better develop the system.[11] There are also some countries still undecided on their regulation approach. Australia commenced a public consultation on its AI regulatory framework proposal in June[12], seeking views on its draft AI risk management approach.[13] Taiwan’s government announced in July 2023 to propose a draft AI basic law by September 2023, covering topics such as AI-related definition, privacy protections, data governance, risk management, ethical principles, and industrial promotion.[14] However, the plan was recently postponed, indicating a possible shift towards voluntary or mandatory government principles and guidance, before establishing the law.[15] II. Hard law or soft law? The pros and cons of different regulatory approaches One of the key advantages of hard law in AI regulation is its ability to provide binding legal obligations and legal enforcement mechanisms that ensure accountability and compliance.[16] Hard law also provides greater legal certainty, transparency and remedies for consumers and companies, which is especially important for smaller companies that do not have as many resources to influence and comply with fast-changing soft law.[17] However, the legislative process can be time-consuming, slower to update, and less agile.[18] This poses the risk of stifling innovation, as hard law inevitably cannot keep pace with the rapidly evolving AI technology.[19] In contrast, soft law represents a more flexible and adaptive approach to AI regulation. As the potential of AI still remains largely mysterious, government bodies can formulate principles and guidelines tailored to the regulatory needs of different industry sectors.[20] In addition, if there are adequate incentives in place for actors to comply, the cost of enforcement could be much lower than hard laws. Governments can also experiment with several different soft law approaches to test their effectiveness.[21] However, the voluntary nature of soft law and the lack of legal enforcement mechanisms could lead to inconsistent adoption and undermine the effectiveness of these guidelines, potentially leaving critical gaps in addressing AI's risks.[22] Additionally, in cases of AI-related harms, soft law could not offer effective protection on consumer rights and human rights, as there is no clear legal obligation to facilitate accountability and remedies.[23] Carlos Ignacio Gutierrez and Gary Marchant, faculty members at Arizona State University (ASU), analyzed 634 AI soft law programs against 100 criteria and found that two-thirds of the program lack enforcement mechanisms to deliver its anticipated AI governance goals. He pointed out that credible indirect enforcement mechanisms and a perception of legitimacy are two critical elements that could strengthen soft law’s effectiveness.[24] For example, to publish stem cell research in top academic journals, the author needs to demonstrate that the research complies with related research standards.[25] In addition, companies usually have a greater incentive to comply with private standards to avoid regulatory shifts towards hard laws with higher costs and constraints.[26] III. Other considerations Apart from understanding the strengths and limitations of soft law and hard law, it is important for governments to consider each country’s unique differences. For example, Singapore has always focused on voluntary approaches as it acknowledges that being a small country, close cooperation with the industry, research organizations, and other governments to formulate a strong AI governance practice is much more important than rushing into legislation.[27] For them, the flexibility and lower cost of soft regulation provide time to learn from industries to prevent forming rules that aren’t addressing real-world issues.[28] This process allows preparation for better legislation at a later stage. Japan has also shifted towards a softer approach to minimize legal compliance costs, as it recognizes its slower position in the AI race.[29] For them, the EU AI Act is aiming at regulating Giant Tech companies, rather than promoting innovation.[30] That is why Japan considers that hard law does not suit the industry development stage they’re currently in.[31] Therefore, they seek to address legal issues with current laws and draft relevant guidance.[32] IV. Conclusion As the global AI regulatory landscape continues to evolve, it is important for governments to consider the pros and cons of hard law and soft law, and also country-specific conditions in deciding what’s suitable for the country. Additionally, a regular review on the effectiveness and impact of their chosen regulatory approach on AI’s development and the society is recommended. [1] ChatGPT and Deepfake-Creating Apps: A Running List of Key AI-Lawsuits, TFL, https://www.thefashionlaw.com/from-chatgpt-to-deepfake-creating-apps-a-running-list-of-key-ai-lawsuits/ (last visited Aug 10, 2023); Protection for Voice Actors is Artificial in Today’s Artificial Intelligence World, The National Law Review, https://www.natlawreview.com/article/protection-voice-actors-artificial-today-s-artificial-intelligence-world (last visited Aug 10, 2023). [2] The politics of AI: ChatGPT and political bias, Brookings, https://www.brookings.edu/articles/the-politics-of-ai-chatgpt-and-political-bias/ (last visited Aug 10, 2023); Prospect of AI Producing News Articles Concerns Digital Experts, VOA, https://www.voanews.com/a/prospect-of-ai-producing-news-articles-concerns-digital-experts-/7202519.html (last visited Aug 10, 2023). [3] EU AI Act: first regulation on artificial intelligence, European Parliament, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Aug 10, 2023). [4] 中國國務院發布立法計畫 年內審議AI法草案,經濟日報(2023/06/09),https://money.udn.com/money/story/5604/7223533 (last visited Aug 10, 2023). [5] id [6] A pro-innovation approach to AI regulation, GOV.UK, https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper (last visited Aug 10, 2023). [7] id [8] AI RISK MANAGEMENT FRAMEWORK, NIST, https://www.nist.gov/itl/ai-risk-management-framework (last visited Aug 10, 2023). [9] The White House released an ‘AI Bill of Rights’, CNN, https://edition.cnn.com/2022/10/04/tech/ai-bill-of-rights/index.html (last visited Aug 10, 2023). [10] New York City Adopts Final Regulations on Use of AI in Hiring and Promotion, Extends Enforcement Date to July 5, 2023, Littler https://www.littler.com/publication-press/publication/new-york-city-adopts-final-regulations-use-ai-hiring-and-promotionv (last visited Aug 10, 2023). [11] IMDA, Fact sheet - Open-Sourcing of AI Verify and Set Up of AI Verify Foundation (2023), https://www.imda.gov.sg/-/media/imda/files/news-and-events/media-room/media-releases/2023/06/7-jun---ai-annoucements---annex-a.pdf (last visited Aug 10, 2023). [12] Supporting responsible AI: discussion paper, Australia Government Department of Industry, Science and Resources,https://consult.industry.gov.au/supporting-responsible-ai (last visited Aug 10, 2023). [13] Australian Government Department of Industry, Science and Resources, Safe and responsible AI in Australia (2023), https://storage.googleapis.com/converlens-au-industry/industry/p/prj2452c8e24d7a400c72429/public_assets/Safe-and-responsible-AI-in-Australia-discussion-paper.pdf (last visited Aug 10, 2023). [14] 張璦,中央通訊社,AI基本法草案聚焦隱私保護、應用合法性等7面向 擬設打假中心,https://www.cna.com.tw/news/ait/202307040329.aspx (最後瀏覽日:2023/08/10)。 [15] 蘇思云,中央通訊社,2023/08/01,鄭文燦:考量技術發展快應用廣 AI基本法延後提出,https://www.cna.com.tw/news/afe/202308010228.aspx (最後瀏覽日:2023/08/10)。 [16] supra, note 13, at 27. [17] id. [18] id., at 28. [19] Soft law as a complement to AI regulation, Brookings, https://www.brookings.edu/articles/soft-law-as-a-complement-to-ai-regulation/ (last visited Aug 10, 2023). [20] supra, note 5. [21] Gary Marchant, “Soft Law” Governance of Artificial Intelligence (2019), https://escholarship.org/uc/item/0jq252ks (last visited Aug 10, 2023). [22] How soft law is used in AI governance, Brookings,https://www.brookings.edu/articles/how-soft-law-is-used-in-ai-governance/ (last visited Aug 10, 2023). [23] supra, note 13, at 27. [24] Why Soft Law is the Best Way to Approach the Pacing Problem in AI, Carnegie Council for Ethics in International Affairs,https://www.carnegiecouncil.org/media/article/why-soft-law-is-the-best-way-to-approach-the-pacing-problem-in-ai (last visited Aug 10, 2023). [25] id. [26] id. [27] Singapore is not looking to regulate A.I. just yet, says the city-state’s authority, CNBC,https://www.cnbc.com/2023/06/19/singapore-is-not-looking-to-regulate-ai-just-yet-says-the-city-state.html#:~:text=Singapore%20is%20not%20rushing%20to,Media%20Development%20Authority%2C%20told%20CNBC (last visited Aug 10, 2023). [28] id. [29] Japan leaning toward softer AI rules than EU, official close to deliberations says, Reuters, https://www.reuters.com/technology/japan-leaning-toward-softer-ai-rules-than-eu-source-2023-07-03/ (last visited Aug 10, 2023). [30] id. [31] id. [32] id.

TOP