The effective and innovative way to use the spectrum: focus on the development of the "interleaved/white space"

1. Prologue

Flexible and collective usage of spectrum is the mainstream in the modern times. Julius Genachowski, chairman of the Federal Communications Commission, delivered the keynote address to the CTIA-Wireless Association convention on Oct. 7, 20091. He said the U.S. government has been tripling the amount of spectrum available for commercial uses. The problem is that many industry experts predict wireless traffic will increase 30 times because of online video and other bandwidth-heavy applications. Accordingly, he warned that the shortage of spectrum would be a crisis for the on-going evolution of mobile broadband communication. Therefore, it’s critical for using precious spectrum effectively. Now, with the breakthrough of ICT, there is an alternative solution to this crisis: "application of interleaved/white space".

2. The cure for shortage of the spectrum

To solve the shortage and ineffective use of scarce spectrum, developed countries have innovated technology to overcome the dilemma. Accordingly, the cognitive radio (CR) network with OFDMA (Orthogonal Frequency Division Multiple Access)2 systems, namely "spectrum sensing", to use the interleaved/white space is the therapy nowadays, especially after digital switchover (DSO).

CEPT (European Conference of Postal and Telecommunications Administrations) identified "white space" as a part of the spectrum, which is available for a radio-communication application (service, system) at a given time in a given geographical area on a non-interfering / non-protected basis with regard to primary services and other services with a higher priority on a national basis. Specified clearly, the wording of "White Spots" or "White Spaces" or "Interleaved Spectrum" applied by CEPT has been used to introduce a concept of frequency spectrum which is potentially available at a given time for further utilization within frequency spectrum originally planned for broadcasting in GE063. The current CEPT view is that any new white space applications should be used on a non protected non interfering basis.

Further studies are required into the framework needed to enable the use of CR devices within white space spectrum.

Meanwhile, Millions more — both rural and urban — couldn’t afford computers and internet access in the United States. Yet big telephone and cable companies won’t bring broadband internet to rural America. Therefore, U.S. administration takes it seriously and considers to bridge the "digital gap" via CR networks for using white space to high-speed wireless internet access in rural area. Moreover, innovative way to use the spectrum after DSO could also satisfy the demand of band immediately with National Broadband Plan which proposed by President Barack Obama.

3. The definition and function of "white/interleaved space"

In a word, the spectrum licensed to commercial use or public safety is not always occupied totally all the time. Accordingly, some bands are vacant just like "white" or "interleaved". If communicators use these interleaved and fragmented bands temporally, the spectrum-usage will be more effective and the cost of the spectrum now we used will be much lower. Not only U.S but also UK regulator Ofcom has published a discussion document to explore the possibility of using interleaved spectrum to wirelessly link up different devices and offer enhanced broadband access in rural areas. The idea is based on the development of technology that could search for unoccupied radio waves between TV channels to transmit and receive wireless spectrum.

Take DSO in U.S. for example, when TV goes digital in June, 2009, TV broadcasters will use only a small portion of the public airwaves they are allocated.4 This is because digital transmissions can be packed into adjacent channels, while analog ones cannot. This means that the band can be "compressed" into fewer channels, while still allowing for more transmissions, which could result in a kind of "white space" (or so-called digital dividend) mentioned above.

In most rural areas, 60 to 70 percent of these digital airwaves will be vacant. It goes without saying that those bands will be idle, which will also increase the cost the spectrum-usage. However, the TV band can carry a broadband signal that penetrates buildings, travels great distances, and penetrates heavy foliage. If people could search the "spectrum hole", off course, with CR or DSA (Dynamic Spectrum Sensing), and then link up those unoccupied band for wireless communication, the compelling needs of spectrum will be eased. Most important of all, this innovative way fits the trend of collective and flexible spectrum usage in 3G/4G era.

4. The key to open "white space"

Undoubtedly, the WSD (White Space Devices) is the key to open the new gate. FCC issues some R&O to test WSD for welcoming white space. On October 5, 2007, OET (the Office of Engineering and Technology) of FCC issued a public notice inviting submittal of additional prototype devices for further tests (Phase II). On February 24, 2010, OET selected Wilmington, North Carolina, for the test market for the DTV transition, and unveiled a new municipal Wi-Fi network, after a month of testing. OET permitted that TV Band has an 18-month experimental license.5

For the goal of "smart city", the network has used the white space made available by the end of analog TV transmission. Spectrum Bridge (a famous company devoted to working out WSD and solution to white space)6 has worked to make sure TV stations in the market do not receive interference (no interference issues have been reported), and the company hopes to do the same if similar service becomes nationwide. The "smart city" network will not compete with cell phone companies but will instead be used for "national purposes", including government and energy monitoring (i.e. Smart Grid). TV Band Network, made up of private investors, has put up cameras in parks, and along highways to show traffic. Other uses include water level and quality, turning off lights in ball parks, and public Wi-Fi in certain areas.7 This success has promptly encouraged those have eyed unlicensed band/devices for wireless broadband internet access, especially the White Spaces Coalition8.

The White Spaces Coalition consists of eight large technology companies that originally planned to deliver high speed broadband internet access beginning in June 2009 to United States consumers via existing white space in unused television frequencies between 54-698 MHz (TV Channels 2-51). The coalition expects speeds of 80 Mbps and above, and 400 to 800 Mbps for white space short-range networking9. Therefore, the Coalition hasn’t only pushed FCC to free up the band, namely unlicensed-band approach, but also eagerly innovated the WSD and advanced IT technology (i.e. Geo-Location, CR, DSA, OFDMA and IEEE 802.2210 …etc. ) to promote the awareness of white space.

5. How to use the key to unlock the door ?

First of all, Geo-Location technology is the threshold to use the white space. Geo-Location is the identification of the real-world geographic location of Internet-connected computers, mobile devices, website visitors or others. In avoidance of band-interference and public safety communication, users mustn’t interfere with the prior ones, or s/he couldn’t access the band via WSD. Thus, Geo-Location can assist WSD users, just like a beacon, to avoid the occupied band and keep them away from nearby transmissions.

Second, a spectrum database that contains Geo-Location information about devices using the free channels in the radio spectrum and some strong database managers are needed. Frankly speaking, the original idea was that WSD would detect existing users and switch frequencies to avoid them, but that's technically dubious and hasn't been demonstrated to FCC's satisfaction. So the proposed solution requires devices to locate themselves then connect to a database which will allocate a frequency along with a timeout, after which the device will have to repeat its request. For example, the followings are the necessary information in the TV database.
• Transmitter coordinates (latitude and longitude),
• Effective radiated power (ERP),
• Height above average terrain of the transmitter (HAAT),
• Horizontal transmit antenna pattern (if the antenna is directional),
• channel number,
• Station call sign.

In a word, in order to protect existing broadcasters, FCC mandated the creation of a Geo-Location database that details what spectrum is in use and where. Furthermore, the idea is that unlicensed broadband devices will tap this database before sending or receiving data, using the info in tandem with spectrum sensing technologies to avoid interference. Accordingly, White Spaces Database (WSDB) was introduced, a DB which would permit public access to register and discover devices and the frequencies used based on their location11. This database would be used in conjunction with local device discovery to avoid contention between devices. FCC has worried about that no one has ever run a radio system like this, so no one can really claim experience in the area (though most of the proposals try).

The FCC commissioner Robert McDowell has raised an eyebrow at Google's request to serve as an administrator of a national database detailing the use of white-space spectrum. Google proposes the operation of a WSDB for at least five years, promising to "transfer to a successor entity the Database, the IP addresses and URLs used to access the Database, and the list of registered Fixed WSD" in case they cannot live up to it. Google does not plan to "implement per-query fees"12 , but they are considering a per-device fee. No decision has been made yet, but the FCC allows a WSDB administrator to charge such fees.13

Finally but innovating initially, it’s the Cognitive Radio system (CR). There are various definitions of CR. Herewith the paragraph 10 of the FCC 03-322 NPRM, the definition of Cognitive Radio could be specified as a radio that can change its transmitter parameters based on interaction with the environment in which it operates.
The following figure shows how the Cognitive Radio System does work.
Figure 1.Cognitive Radio System

Let’s explain it more clearly and vividly. Imagine a radio which autonomously detects and exploits empty spectrum to increase your file transfer rate. Suppose this same radio could remember the locations where your calls tend to drop and arrange for your call to be serviced by a different carrier for those locations. These are some of the ideas motivating the development of cognitive radio. In effect, a cognitive radio is a software radio whose control processes leverage situational knowledge and intelligent processing to work towards achieving some goal related to the needs of the user, application, and network.

Although cognitive radio was initially thought of as a software-defined radio extension (Full Cognitive Radio), most of the research work is currently focusing on Spectrum Sensing Cognitive Radio. In other words, the focus on CR has been switched into "DSA" (Dynamic Spectrum Access) nowadays.14 Therefore, some fellows replace Cognitive Radio with "Cognitive Systems" for accurate description.15 The following is the figure to show the function of DSA to detect "spectrum hole" that could be used as TV white space.16

Figure 2.The sensing of the spectrum hole

"Digital dividend", one kind of interleaved/white space, has been viewed as precious band in Unite Kingdom, too. In U.K., its regulatory body, Ofcom, has also published a discussion document to explore the possibility of using these "dividend" to wirelessly link up different devices and offer enhanced broadband access in rural areas. Ofcom has predicted that could enable the use of the spectrum in this way would take at least three years to develop. Possible applications include mobile broadband, the transmission of home media such as photos from cameras to a computer wirelessly and the ability to control appliances in the home. Moreover, Ofcom firmly contended that if there was evidence that interference could be avoided, it would allow the use of interleaved spectrum without the need for individual licenses, the same as the FCC’s policy.

However, local TV coalition United for Local Television (ULTV)17 has strongly criticized the Ofcom’s current proposal to appoint a band manager to "control" interleaved spectrum (and make it available to applications such as wireless microphones for special events) and to ensure that the spectrum is made available to local TV groups on fair, reasonable and non-discriminatory terms. According to current proposals, Ofcom’s "band manager" would be required to allocate spectrum to special event organizers on fair and non-discriminatory terms but not to local TV groups. ULTV has protested this unfair condition. In contrast, FCC has clearly issued the "2nd report" to mandate the bidder of upper 700 MHz D block should apply to fair and non-discriminatory terms.

6. Technological challenges for accessing white space

In November 2008 the FCC issued an R&O on the unlicensed use of TV white space.18 The FCC regulated some vital requirements to rule the usage of TVWS in this document. These requirements impose technical challenges for the design of devices operating in TV white space spectrum, which brings new tough task for the innovation and production of WSD.19

These new rules provide an opportunity but they also introduce a number of technical challenges. The challenges require development of cognitive radio technologies like spectrum sensing as well as new wireless PHY and MAC layer designs. For example, the development of spectrum sensing techniques involves RF (Radio Frequency) design, robust signal processing, pattern recognition and networking protocols… etc.

The choice of RF architecture is no longer merely a hardware issue, but will directly affect the upper layer performance. Furthermore, these challenges include spectrum sensing of both TV signals and wireless microphone ones, frequency agile operation, geo-location, stringent spectral mask requirements, and of course the ability to provide reliable service in unlicensed and dynamically changing spectrum.20

In addition, the FCC has strict out-of-band emission (OOBE) requirements to prevent interference with licensed transmissions in other channels. A detailed description of these out-of-band emission requirements and their impact on the transmission spectral mask for WSD is provided in Section VII of the R&O.

Unfortunately, there are still other hurdles to be overcome. While the frequencies used by television stations do have a long reach and easily penetrate walls, it is important to remember that these signals are one-way communications, often broadcast from giant antennas at megawatts of power. For gadgets and computers, a much lower transmission power would be used, greatly decreasing the range of the White Space devices. So are we talking the Wi-Fi-like ranges here or 3G-like ranges? The National Association of Broadcasters has also questioned the ability of WSD to operate without interfering with television broadcasts. In addition, wireless microphones could be affected, although Google has proposed a "beacon" that could be utilized alongside existing wireless microphone equipment that would alert WSD not to operate on the same channel.

Last but not least, how to ensure QoS of WSD users is implicit trouble. The Cognitive Radio system should provide that fast, robust, coordinated sensing and quite periods and to protect incumbents as well as provide QoS. It will be a dilemma faced by the regulatory bodies and ICT industry. Another real-world problem is that there are no WSD for consumers and even if someone comes out with a new product, it will likely be very expensive since it isn’t widely produced,21 although Spectrum Bridge has proven one example mentioned above.

Nevertheless, some people still criticized what Spectrum Bridge has done probably could have used 5 GHz for the point-to-point backhaul connections. "The Smart City" is using Wi-Fi for the last mile rather than white spaces because there are no white space devices on the consumer end. Rick Rotondo, chief marketing officer for Spectrum Bridge argued Spectrum Bridge tried using Wi-Fi at 2.4GHz, 5GHz would never have made it; 2.4 didn’t make it. However, Spectrum Bridge did use Wi-Fi for the last hundred feet, not the last mile, but for the last hundred feet because there are Wi-Fi receivers built into laptops and smartphones and that’s who we wanted to be able to connect to this network. It sounds like a tautology.

7. What’s beyond the white space ?

What kind of ICT could people apply to after getting the white/interleaved space? "Super Wi-Fi" is the first application connected with white space. As Larry Page, co-founder of Google, has described that white spaces are like "Wi-Fi on steroids" linked up wireless internet with much faster speeds, stronger signals and more affordable costs. Besides, there are other advanced ICT could function via white space, such as LTE, IPTV, MediaFLO, DVB-H, ISDB-T, MVNO, ITS (DSRC) and so on.

8. Vision: Legal challenges for accessing white space in Taiwan

Although not mentioned above, FCC indeed allows the secondary-market of spectrum boosting in U.S. That’s an important reason, or motivation, to develop white space applications and regulations. In other words, the spectrum, not the license, could be auctioned, leased, retailed, weaved and so on. However, the regulatory mode of communication in Taiwan is "Vertical Regulatory Framework", which would be an obstacle to evolve the spectrum-usage in contrast to U.S and EU.

Under the interpretation of Legal Positivism, Taiwan Budget Act Article 94 states, "Unless otherwise provided for by law, grant of quota, frequency, or other limited or fixed amount special licenses shall be conducted by open auction or public invitation to tender and the proceeds of which shall be turned in to the national treasury." Hereby, the administration could really fulfill the legal assignment via public invitation to tender or auction for the "license", not the band. Nevertheless, the administration does not apply auction process to issue the licenses, but approaches the frequency licenses with "Radio and Television Act" and "Administrative Regulations on Radio Waves" which is promulgated under the Telecommunications Act in accordance with the first paragraph of 48, Section 1 of said Act instead.

Step closely, Radio and Television Act Article 4 firmly states, "The frequencies used by radio/television businesses are owned by the state and their allocation shall be planned by the MOTC in conjunction with the regulatory agency. The frequencies mentioned in the preceding paragraph may not be leased, loaned, or transferred. (emphasis added)". This article has resulted in inflexible use of spectrum, and dragged the collective use of spectrum, too. Undoubtedly, only we have to do is to amend the article for accessing white space in accordance with Legal Positivism.

Second, according to Administrative Regulations on Radio Waves, the National Communications Commission shall be responsible for the overall coordination and regulation of radio waves including radio frequencies, power, emission method and radio station identification call sign etc., which shall not be used or altered without approval. Thus, under the justice of legal system, NCC should revise the spectrum policy/regulations in harmony with Administrative Regulations on Radio Waves. For example, the Article 6 and 10 separately regulates, "The radio equipment shall adopt the latest technical advances to limit the number of frequencies and the frequency bandwidth used to the minimum essential for the necessary services. The frequency assigned to a station of a given service shall be separated from the limits of the band allocated to this service in such a way that, taking account of the frequency band assigned to a station, no harmful interference is caused to services to which frequency bands immediately adjoining are allocated." Therefore, WSD indeed, even necessarily, should be applied to band management and revolution of ICT industry.

Moreover, Central Regulation Standard Act Article 5 (embodied the principle of constitutional requirement of a specific enactment) also requires, "The following objects shall be stipulated by a statute: 1. It is required to stipulate by a statute as the Constitution or a statue expressly stipulated. 2. Stipulation concerns the rights or obligations of the people. 3. Stipulation concerns the organization of a government agency at national level. 4. Other objects with substantial importance shall be stipulated by a statute." The Legislative Yuan must consider to promote the status of Administrative Regulations on Radio Waves to Statue, which conforms to Constitutional requirement.

To sum up, Taiwan administration should take white space seriously, or ICT in Taiwan will be doomed as if getting lost in "space".

9. ad hoc Conclusion :Do not lock the door of white space

"Open access" is the most important canon in the usage of white space. In this meaning, there are two dimensions for open access. One is unlicensed band-usage, the other is unlicensed WSD which is also unlicensed and interlocks into different operators’ networks. The later is a big task in America. FCC’s decision was contested by the TV broadcasters who fear using the freed channels would interfered with TV signals and live singers who are using the same wave spaces.22 Larry Page also argued that unlicensed white spaces offer a way for the U.S. to catch up with the rest of the world in broadband access. Today, 10% of Americans still don't have access to DSL or cable broadband, according to consultancy Parks Associates.

Fortunately, the first steps towards white space communications have already been taken and FCC has approved unlicensed use of the spectrum, but FCC requires a database of all known licensed users to be deployed in order to prevent from interfering with the existing broadcasts and devices already using the space, such as licensed TV broadcasts and some wireless microphones

The second dimension is unlicensed WSD to compatible different network architecture. At first, the unlicensed devices must fit the criterion which could guarantee that they will not interfere with assigned broadcasts can use the empty white spaces in frequency spectrum. In order not to harm nearby transmission, the best way is to set a standard for WSD in one network built by certain operator. For example, if WSD users want to connect to Verizon Wireless’ network, s/he has to buy/use Verizon Wireless’ WSD. However, out of Verizon Wireless’ network, WSD users have to purchase/use another WSD. It will be inconvenient and raise the cost, but quench people’s desire to use WSD. As a result, FCC issued the R&O to prevent devices-locked, so-called "discriminatory QoS", from deploying the white space proposal. Accordingly, the mandatory rule indeed slows down the innovation of WSD.

Obviously, unlicensed use of the vacant TV channels is an economic and social revival waiting to happen in rural areas. In addition, white/interleaved space will manage to fit the core principle of modern spectrum-development, "collective and effective use". There are so many merits to share the "dividend", but at this time, we are still far away the real "white space". The situation in Taiwan is much worse unfortunately.


1.See FCC official document,http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-293891A1.pdf (last visited 03/05/2010)

2.OFDMA is a multi-user version of the popular Orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low data rate transmission from several users.

3.See Final Acts of the Regional Radio-communication Conference for planning of the digital terrestrial broadcasting service in parts of Regions 1 and 3, in the frequency bands 174-230 MHz and 470-862 MHz (RRC-06).

4.In the United States, the abandoned television frequencies are primarily in the upper UHF "700-megahertz" band, covering TV channels 52 to 69 (698 to 806 MHz).

5.See http://spectrumbridge.com/web/images/pdfs/smart_city-spectrumbridge.pdf visited on 2010/2/27.

6.http://spectrumbridge.com/web/

7.See http://showmywhitespace.com/portals/1/Spectrum%20Bridge%20Launches%20White%20Spaces%20Network%20In%20Wilmington-New%20Hanover%20County.pdf visited on 2010/2/27.

8.The group includes Microsoft, Google, Dell, HP, Intel, Philips, Earthlink, and Samsung Electro-Mechanics.

10.The standardization is another crucial issue but will not be discussed in detail hereunder.

11.In February 2009, Google joined Comsearch, Dell, HP, Microsoft, Motorola, and Neustar to form the White Spaces Database Working Group (WSDG), an effort to build such a database..

12.Actually, the database host will know where users are and the kit they're using, both of which are commercially valuable pieces of information. Google thinks that data will pay for the database, and Google is very good at extracting value from information; but even if it can't turn white space into gold, it will have five years to drive the competition out of business.

13.See generally Google’s proposal to FCC, http://www.scribd.com/doc/24784912/01-04-10-Google-White-Spaces-Database-Proposal visited on 2010/2/28.

14.Specifying clearly, the main mechanism of CR is including, but not limited to DSA.

15.Evolution of Cognitive Radio toward Cognitive Networks is under process, in which Cognitive Wireless Mesh Network (i.e. Cog-Mesh) is considered as one of the enabling candidates aiming at realizing this paradigm change.

16.Test conducted in the rural sector west of Ottawa, Canada. See C. R. Stevenson, G. Chouinard, W. Caldwell,Tutorial on the P802.22.2 PAR for :"Recommended Practice for the Installation and Deployment of IEEE 802.22 Systems," IEEE802, San Diego, CA, 7/17/06 http://grouper.ieee.org/groups/802/802_tutorials/july06/Rec-Practice_802.22_Tutorial.ppt.

17.United for Local Television ("ULTV") is a coalition of groups and campaigners who together lobby the government to recognize local TV as a public service. ULTV argues that all citizens should have access to local TV, no matter where they live, without having to subscribe to pay-TV or broadband. ULTV proposes that the government reserve capacity for local TV services on the most popular television platform in the UK today – digital terrestrial television (commonly known as "Freeview"). ULTV anticipates that local TV channels will provide local news and sport, together with a range of other local and networked programming. ULTV envisages local TV services would also provide local advertising, for the first time offering a cost-effective option for many local businesses seeking to advertise on terrestrial TV in their target market.

18.See Second Report and Order and Memorandum Opinion and Order In the Matter of Unlicensed Operation in the TV Broadcast Bands, Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band, Federal Communication Commission, Document 08-260, Nov. 14, 2008.

19.In detail, the FCC distinguished fixed WSD from portable one. There are different restrictions and requirements between them.

20.See http://ita.ucsd.edu/workshop/09/files/paper/paper_1500.pdf visited on 2010/2/20.

21.See http://www.digitalmediabuzz.com/2010/03/broadband-debate-white-space/ visited on 2010/3/17.

22.See http://lasarletter.net/docs/nabpet4review.pdf visited on 2010/2/25.

※The effective and innovative way to use the spectrum: focus on the development of the "interleaved/white space",STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=169&d=6125 (Date:2024/10/07)
Quote this paper
You may be interested
Introduction to Critical Infrastructure Protection

The security facet of cyberspace along with a world filled with CPU-controlled household and everyday items can be examined from various angles. The concept of security also varies in accordance with different stages of national conditions and industrial development in different nations. As far as our nation is concerned, the definition of security industry is "an industry offering protection for human bodies, important infrastructure, information, financial system, as well as offering equipment to defend the security of national lands and the service"1 as initially defined by "Security Industry Program Office." Judging from the illustration of the definition, the security industry should be inter-disciplinary and integrative, which covers almost all walks of life and fields, such as high-tech industrial security management, traffic & transportation security management, fire control and prevention against natural calamities, disaster relief, information security management, security management in defense of national borders, and prevention of epidemics. After the staged mission, "e-Taiwan program", was accomplished in 2007, our government hoped to construct a good surrounding by creating a comfortable life from a user’s point-of-view. This was hoped to be achieved by using "the development of a high-quality internet society" as a main source by using innovative services, internet convergence, perceptive environment, security, trust, and human machine linkage. At the Economic Development Vision for 2015: First-Stage Three-Year Sprint Program (2007~2009) formulated by the Executive Yuan, wireless broadband, CPU computer-controlled items all have become part of our every day lives, and healthcare, along with the green industry are listed as the next emerging industries; whereby the development of relevant critical technologies is hoped to be promoted to create higher industrial values and commercial opportunities. However, from a digitally-controlled-life viewpoint, the issue concerned by all walks of life is no longer confined to the convenience and security of personal life but gradually turns to protection of security of a critical infrastructure (CI) run by using information technology. For instance, finance management, stock market, communication network, harbors and airports, high speed rail, R&D of important technology, science parks, water purification facilities, water supply facilities, power, and energy facilities. 2Because security involves resources related with people's most fundamental living needs and is the most elementary economic activity of the society, it is regarded as an important core objective to promote the modern social security system. Therefore, critical infrastructure protection requires more dependence on information and communication technology to maintain the stability of finance and communication, as well as the security of facilities related with supply and economy of all sorts of livelihoods in order to ensure regular operation. With the influence of information and communication technology on the application of critical infrastructure on the increase, the society has increasingly deepened its dependence on the security of our cyber world. The concept and connotation of information security also keep extending with it toward the aforementioned critical infrastructure protection planning, making critical information infrastructure protection (CIIP) and critical infrastructure protection (CIP) more inseparable in concept3 , and becomes an important goal of policy implementation to achieve the vision of a digital lifestyle which is secure for every nation. In recent years, considerable resources have been invested to complete an environment whereby a legal system of “smart lifestyle” is developed. However, what has been done for infrastructure protection continues to appear as not being comprehensive enough. This includes vague definitions, scattered regulations and policies, different protection measures taken by different authorities in charge, obvious differences in relevant risk management measures and in the magnitude of management planning of information security and so on. These problems all influence the formation of national policies and are the obstacles to the promotion of relevant industrial development. In view of this, the 2008/2009 International CIIP Handbook will be used as the cornerstone of research in this project. After the discussion on how critical infrastructure protection is done in America, Germany and Japan, the contents of norms of regulations and policies regarding critical infrastructure protection in our nation will be explored to make an in-depth analysis on the advantages and disadvantages of relevant norms. It is hoped to find out what is missing or omitted in the regulations and policies of our nation and to make relevant amendments. Suggestions will also be proposed so that the construction of a safe environment whereby the digital age of our nation can be expanded to assist the “smart lifestyle” to be developed further. 1.See http://tsii.org.tw/modules/tinyd0/index.php?id=14 (last visited May 24, 2009) 2.For "2008 International Conference on Homeland Security and Application of Technology in Taiwan ~ Critical Infrastructure Protection~", please visit http://www.tier.org.tw/cooperation/20081210.asp (last visit date: 05/17/2009). 3.For critical infrastructure protection, every nation has not only proceeded planning for physical facilities but put even more emphasis on protection jobs of critical information & communication infrastructure maintained via the information & communication technology. In the usage of relevant technical terms, the term "critical infrastructure" has also gradually been used to include the term "critical information & communication infrastructure". Elgin M. Brunner, Manuel Suter, Andreas Wenger, Victor Mauer, Myriam Dunn Cavelty, International CIIP Handbook 2008/2009, Center for Security Studies, ETH Zurich, 2008. 09, p. 37.

Norms of Critical Infrastructure Protection in Japan

The approaches to promote critical infrastructure protection in Japan The approaches to promote critical infrastructure protection in Japan are illustrated below: 1. Coverage of Critical Information Infrastructure In the "Action Plan on Information Security Measures for Critical Infrastructure" promulgated by the Information Security Policy Council (ISPC) in 2005, critical infrastructure is defined as: Critical infrastructure which offers the highly irreplaceable service in a commercial way is necessary for people's normal lives and economic activities, and if the service is discontinued or the supply is deficient or not available, it will seriously influence people's lives and economic activities. Based on the definition of the action plan, the critical infrastructure contains: telecommunication systems, administration services of the government, finance, civil aviation, railway, logistics, power, gas, water, and medical services 2. Promoted Relevant Policies of The Past The issues regarding the CIIP are gradually being developed with the norm of information social security policy in Japan. Adopting the Action Plan of the Basic Guidelines Toward the Promotion of an Advanced Information and Telecommunications Society of 1998 proposed by the Japanese government in 1998 as a basis. The Japanese government keeps presenting polices of improvement for the relevant issues in order to acquire the stable development of telematics and telecommunications. Several years later, the Ministry of Economy, Trade, and Industry (METI) announced the Comprehensive Strategy on Information Security in 2003. The formulation of the strategy not only emphasizes the possible telematics-related risks and protection against threats that may be encountered in the information society, but it also enhances the level of information security to the level of national security and presents a comprehensive information security improvement program. Furthermore, the submission of the strategy has identified government’s responsibility in the development of information security Therefore, a division which is solely responsible for information security was established in the Cabinet Secretariat and is devoted to the development of it. In 2005, the Ministry of Economy, Trade, and Industry (METI) amended the Comprehensive Strategy on Information Security and announced the First National Strategy on Information Security based on the creation of a policy of a long-term information security task in Japan which is also the foundation for the policy of guidelines and action security concerning critical information infrastructure. This is in addition to being the most important basis for the policy of information security development. The strategy is different from the Comprehensive Strategy on Information Security in connotation. In the range of information security protection, it not only maintains information security from the perspective of the government; for instance, to divide the rights and duties on information security protection practices between the central government and the local government, and to strengthen the capacity of the government to solve emergencies such as cyber attacks, but it also tries to employ the public-private partnership on the CIIP issue to construct an extensive information security protection and to develop a Capability for Engineering of Protection, Technical Operation, Analysis and Response (CEPTOAR): one similar to the ISAC of America, to strengthen the information sharing and analysis of information security of all industry involved. According to the strategy, the METI established the Information Security Policy Council (ISPC) and the National Information Security Center (NISC) under the subordination of the Cabinet Secretariat in order to reach a goal of dependable society of information security.1 Finally, the information security policies more directly related with the CIIP are the Action Plan on Information Security Measures for Critical Infrastructure and the Standards for Information Security Measures for the Central Government Computer Systems, both of which regulate CI-related threats, information security standards, public-private partnership information sharing system, and the levels of information security standards between different governments and critical infrastructures, respectively. 3. Oraganization Framework Generally speaking, the Cabinet Secretariat is the main division of the CIIP and the information security for the Japanese government, while the ISPC and the NISC established under the Cabinet Secretariat in 2005 are the core organizations for the development of the CIIP policy. In addition, the National Policy Agency (NPA) and the Ministry of Internal Affairs and Communications (MIC) also played an important role in assisting the Cabinet Secretariat with critical infrastructure protection. The part of public-private partnership is covered by the CEPTOAR which takes the responsibility for information sharing and analysis of information security between the government and private organizations. 4. Notification System For critical infrastructure protection, Japan has set up a warning and notification system in addition to the emphasis on fundamental information security protection. With the concept of public-private partnership, various messages related with information security are analyzed and shared in order to prevent information security incidents from occurring. The network of notification system in Japan mainly consists of several organizations as listed below. (1) National Incident Response Team The National Incident Response Team (NIRT) which is the information security office under the Cabinet Secretariat in the organization framework belongs to the Computer Emergency Response Team (CERT)2 and is first in line in the government to handle internet emergencies. According to the Action Plan for Ensuring e-Government's IT Security, the NIRT which consists of 17 experts from the government and the private organizations is responsible to (1) accurately understand and analyze emergencies, (2) develop technical strategies to solve and rehabilitate emergencies to prevent incidents from reoccurrence, (3) provide other governmental organizations the assistance to solve the information security issue, (4) collect and analyze information or intelligence so that effective solutions and strategies may be provided when an incident happens, (5) provide the governmental organization with professional knowledge and information, and (6) enhance and improve all knowledge pertinent to information security. (2) Computer Emergency Response Team Coordination Center The Japan Computer Emergency Response Team Coordination Center (JPCERT/cc) is the first Computer Security Incident Response Team (CSIRT) established in Japan. It consists of internet service suppliers, security products/service suppliers, governmental agencies, and associations of industry & commerce. The JPCERT/CC is also a member of the Asia Pacific Computer Emergency Response Team (APCERT) and a member of the Forum of Incident Response and Security Teams (FIRST). It coordinates and integrates prevention measures pertinent to information security and is consistent with other CSIRTs. (3) Telecom Information Sharing and Analysis Center In Japan, besides the mechanism responsible to notify the government, which functions as a bridge for communication between it and all those outside of it, the mechanism of information sharing and notification is also established among industries to provide each with a channel for information exchange and consultation. In 2001, Japan established the Telecom Information Sharing and Analysis Center Japan (Telecom-ISAC Japan). In addition to real-time inspection for computer intrusion incidents and conducting information collection and analysis, the Telecom-ISAC Japan proposes to e-government many suggestions related with the Transact-SQL issue as well. The reasons for launching the Telecom-ISAC are to instantaneously detect a computer intrusion incident, and to instantaneously gather and analyze its information, and then exchange this with other telecom carriers and offer them relevant countermeasures for precaution; so that in can reach the goal of ensuring telecom security since it is an important infrastructure concerning social economy. (4) Cyber Force The reasons for launching the Cyber Force are to maintain the security to use the internet by regularly "patrolling" it, searching for evidence of internet crime, and to notify the critical infrastructure operators about any unusual internet use so as to prevent the occurrence of cyber terror attacks. The Cyber Force also assists operators to solve and diminish the damage and influences when an incident occurs. (5) Portal Site of National Police Agency The National Police Agency owns the portal site "@police". It exists to prevent large-scale cyber emergencies and to provide gathered information concerning information security to government. In addition to providing the techniques related with the safe use of computer networks, @police is also dedicated to educating internet users about the concept of information security and to increase security awareness. (6) Ministry of Economy, Trade and Industry Since 1990, the Ministry of Economy, Trade and Industry (METI) has cooperated with the JPCERT/CC and the Information Technology Promotion Agency (IPA) to provide reports on virus, intrusion, and the damage caused by them, to remind the public to pay attention. 5. Legal Norms The laws regarding critical infrastructure protection in Japan are illustrated as follows: (1) Unauthorized Computer Access Law of 1999 The Unauthorized Computer Access Law includes various conducts such as cyber intrusion, and data thefts, into the norms of criminal punishment to deter cyber crimes from spreading in order to ensure the safety of the critical information infrastructure. (2) Act on Electronic Signatures and Certification Business of 2000 With the formulation of the Act on Electronic Signatures and Certification Business, the smooth promotion of the electronic signature system is ensured and the circulation and process of electronic communication can be fostered further. (3) Basic Law on Formation of an Advanced Information and Telecommunication Network Society of 2001 Through the formulation of the Basic Law on Formation of an Advanced Information and Telecommunication Network Society, the legal basis to execute an information technology policy is enhanced, and the direction and job content for the government to execute this policy is explicitly stated. 1.http://www.nisc.go.jp/eng/pdf/national_strategy_001_eng.pdf(last accessed date: 2009/07/20). 2.http://www.nisc.go.jp/en/sisaku/h1310action.html(last accessed date: 2009/07/20).

Challenges and Opportunities from Digital Convergence

Preface With the blooming of IT technologies, the term of “digital convergence” represents the whole atmosphere at this moment. “Digital convergence”—means that after telecommunication and broadcasting systems are following the IP based framework, contents and services, those were easy to define, turn to be confused. Relying on the uniform platform, operators are able to provide services to different systems. Services containing VoIP, IPTV or the latest terms of “Multi-screen Ecosystem” and “Connected TV” are all involved in the “digital convergence” notion. Today, no matter the service of “check in” or “watching TV programs on Smartphone,” any figures about multiple services on different devices are presenting the “digital convergence” effect. On the consumer side, “digital convergence” brings a fascinating imagination of life. Time and space are no more limitations to people for getting information. Consumers select services only depending on the quality of each service. However, the fascinating imagination of customers becomes a pressure to the relative industries. In the past, because of distinctive transmission technique, services of television, internet and information were regarded as in different industries. Effective competitors only appeared in the same industry. However, today “digital convergence” effect results in crossing-industries competition and customer immigration. To accommodating and pursue the new trend, only unique ideas and novel services can help incumbents to survive. “Digital convergence” brings not only a challenge but also an opportunity. Today, user-friendly application services are cumulatively created and accommodated in the mature broadband network. For examples, high quality entertainment services occur after communication and multimedia broadcasting techniques are improved, “Near Field Communication” technology rising causes new types of cash flow services. Otherwise, Cloud Computing technique enables people easily to access tele-healthcare services and Telematics services. Certainly, digital convenience accelerating industries transformation and value-added services is now taking place around us. According to ITU reports, every 10% increase of broadband infrastructure extension might cause 0.255 to 1.38% GDP growth rate. High penetration of broadband infrastructure might lead a significant influence on economy growth. Take South Korean experiences as an example, by owing a complete broadband infrastructure, on-line game industry and national digital content industry in this country are individually possessing $8.3 billion and $ 3.4 billion output value. By sensing the potential possibilities, governments in different countries propose their own national industry policies, including American government proposed “National Broadband Plan”, the “Digital Britain White Paper” formulated by United Kingdom, “Hikari no Michi”(光の道, which means fiber superhighway) in Japan and the “Ultra-Broadband Convergence Network Plan (UBcN plan)” in South Korea, moreover, the “Tri-networks Integration Plan” in China. And Taiwan does not absent in this moment. In order to stand firmly in this trend, we also formulate “Digital Convergence Development Program 2010-2015 (DCDP 2010-2012)” in 2010. Below, we are going to make a briefly and neat description of “DCDP 2010-2012”. 1.INTRODUCTION For assisting national relative industries to smoothly transform and enhancing Taiwan’s international competitiveness, Executive Yuan admitted the “Digital Convergence Development Program 2010-2015 (DCDP 2012-2015)” in 2010. In this program, there were six main goals containing: (1) complement the broadband superhighway infrastructure; (2) initiate the convergence of telecommunication services; (3) accelerate the process of Television digitization; (4) develop emerging internet video services; (5) improve communication industries; and (6) establish an integrity regulation framework, as well as twenty-one improving tactics and seventy-eight measures for crossing- administrations cooperation and negotiation to be declared. Otherwise, Executive Yuan also established DCTF to be responsible for coordinating every effort from every administration and facilitate digital convergence tasks. Latter, we will make further descriptions for the six main goals, we just mentioned above: A.Complement the broadband superhighway infrastructure According to the Global Information Technology Report 2010-2011, proposed by World Economic Forum (WEF), Taiwan on the Network Readiness Index (NRI) item was been ranked at 6th place and at 5th place on another item of highest FTTH/FTTB penetration. However, though our coverage of broadband network was high, the total bandwidth was still insufficient to contain all the new creating services. To resolving the shortage of bandwidth, including Ministry of the Interior (MOI), Ministry of Economic Affairs (MOEA), Ministry of Transportation and Communications (MOTC) and National Communications Commission (NCC) were convened to extend the national fiber coverage and facilitate the installation upgrade. Regarding wireless broadband construction, administrations including MOEA, MOTC and NCC were under obligation to energetically detect the latest developments of wireless telecommunication technologies as well as proposed guidelines from other countries, concerning about the allocation of spectrum, telephone numbers and IP address resources. Through crossing-administrations cooperation and coordination, in December 2011, the total of national subscribers applying fiber network service had achieved 3.31 million houses, besides, there were 24.58% houses in Taiwan possessed 100Mbps broadband network services. Totally, there were 7.88 million wireless broadband accounts being applied. B.Initiate the convergence of telecommunication services Smartphone booming brought an emerging mobile entertainment life style, furthermore, it also accelerated the rising of mobile value-added application services. To this trend, administrations containing MOEA, Financial Supervisory Commission (FSC) and NCC all devoted to establishing a constructive environment, with providing assists and building up a complete regulation framework. For examples, up to the end of 2011, national telecommunication operators had signed a memorandum with EasyCard Corporation to develop a mobile cash flow platform, which allows cash flowing through the Internet, for giving people a more convenient experience. C.Accelerate the process of Television digitization Within various emerging application services, “Television digitization” might be the most important one in people’s life. “Television digitization” service brought not only a higher quality experience of watching programs, but also created extra demands of relative application services. Furthermore, increasing demands also bought an improvement to the industry and simultaneously accelerating the development of digital content industry. Nationwide terrestrial TV signal switching program, a fully signal switching from analog to digital, has accomplished in July 2012. In order to achieve 90% coverage rate of digital signal transmission, accommodations containing Council of Indigenous People (CIP) and NCC were not only devoted to establishing a Digitization Improvement Station, but also attempt to integrate all signals from original terrestrial TV stations into one satellite to transmit. To accomplish this signal switching program, government had cultivated for many years and try to increase people’s acceptance level of high definition (HD) TV service. Before receiving this success, NCC had spent a long time devoting itself to integrating containing every effort from many administrations and associations, such as the local governments, national industry associations and operators of household application, moreover, as well as Public Enterprises, including Taiwan Power Company, Chunghwa Post Corporation and Taiwan Water Corporation to popularizing this program. Nevertheless, about the digitization program of cable TV, up to 2010, though there were already 60% of houses in Taiwan possessing cable TV service, only 5.55% of cable TV houses switched into digital. As a result, we found that no incentive measures might be the crucial reason. To reverse the impasse, our strategy was to amend the current laws, through adjusting the regulation framework we could facilitate the market into effective competition. In addition, to accelerate the cable TV digitization process, government also regarded the Olympic relaying in England as a turning point to create the demands of HD TV service. After getting the franchise, people are able to watch Olympic Games through any platforms, including terrestrial TV, cable TV and even IPTV. As the demands arising, it would also encourage operators to produce more HD programs afterward. D.Develop emerging internet video services Digital convergence effect also caused the emerging internet video services booming. In order to encourage the crossing-platforms video services and achieve 50% user rate in 2015, there were three guidelines been proposed. The first one was emerging video service regulation reforming, the second one was facilitating integration between emerging accessing approaches and distribution channels, and the third one, developing a rational regulation on contents management. In synchromesh with terrestrial TV signal switching program, emerging internet video services were also assigned to provide HD Olympic Games programs. In that period, the subscribers of Chunghwa Telecom’s MOD (Multimedia on Demand) service were able to watch the Olympic Games relaying on 14 free HD channels and 1 free 3D channel, which is provided by ELETA TV. Moreover, they could also receive the programs on demand through internet or Smartphone. Afterward, from the collected data, we found that even though the rate of new subscribers only had a few rise, an obviously rose presented on the turning on rate. Depended on those data, we believe that people had already been more familiar with IPTV and HD programs. Besides, this relaying program totally attracted 95 individual advertising and the total revenue from advertising was NT$ 80 million dollars. E.Improve communication industries Producing prolific contents is the key element for attracting customers and stabilizing the development of digital convergence industry. To facilitate the contents producing, DCDP proposed three elements to be improved: fund, talent and marketing. And the tasks of these three elements were including investment facilitation, marketing skill reinforce, personal training as well as culture protection, consumer’s right protection, technique standardization and transnational cooperation. To assist in industries transformation, MOEA focused on promoting the APP design and upgrades. Recently, measures provided by MOEA, such as transformation counseling, R&D subsidies, drive-by VC investment, personal training and even the R&D loan had already taken effect. In addition, to create a virtuous investment circles in contents industry, government also considered to release more subsidies to encouraged those superior producers and movie makers. F.Establishing an integrity regulation framework Digital convergence effect accelerated the competition in the market, including communication or relative contents industries were enter a transformation era. In this period, it was essential to have a practical and integrity regulation framework. Recently, NCC hastened to undertake the amendments of three Acts, containing Radio and Television Act, Cable Radio and Television Act and Satellite Broadcasting Act. Actually, the expectation of this undertaking was to adopt the adjustment of digital convergence in 2014. In addition, Fair Trade Commission (FTC) and Intellectual Property Office (IPO) would also continue to observe the digital convergence influences in 4C (telecommunication, cable television, computer network and e-commerce) and contents (copyright) industries. 2.Second Edition of DCDP and Primly Policies Indicators Advance Since DCDP was launched, it has caused a tremendous response. Nevertheless, rapidly advanced ICT technologies inspire people’s expectations. Recently, it has already overtaken the anticipations of used DCDP. Therefore, to formulate a prescient version, Executive Yuan adopted the second edition of DCDP 2010-2015 in May 2012. In the second edition, an item of “producing prolific TV programs” is added to be the seventh main subjects, in addition, there are five extra items added in the improving tactics part; moreover, the number of measures increased to 107 items. Digital convergence indicators are also reformulated. First, 100Mbps wired broadcasting service should achieve 100% in 2013, and the second, accomplishing 100% digitization of cable TV in 2014. To achieve these indicators, relative administrations decide to accelerate the network infrastructure complementing process and cable TV digitization process. Simultaneously, they also consider extending their regulatory scale from emerging internet video services to the connected TV industries, and enhancing superior programs producing by policy making. In point of accelerating network infrastructure complementing process, a complete broadband network is a foundation of digital convergence industry. However, a “complete” network indicates not only the non-discriminatory access to the hardware, but also mention about having reasonable prices to access broadband services. By considering of Telecommunication operators and cable TV operators are both provides of broadband services, the digitization issue of cable TV industry is also concerned in the DCDP. As a primary enemy to Telecommunication operators in the convergence market, cable TV operators’ competitiveness does not come from the their large share on the cable TV market, but from their possession of wide spread cable network. Otherwise, various new creating contents and application are also encouraged in the DCDP. With “Smart TV,” “HDTV” and “Connected TV” booming, “TV” has transformed from a passive receiving media to an information transport. Although, those emerging broadcasting techniques might threaten the traditional television industry, they bring positive influences to the media industry. By considering a well-run development must building on a integrity and friendly regulation framework. DCTF, an office established by Exclusive Yuan, will also take its responsible to assist NCC on the digital convergence regulatory issues. 3.Conclusion Digital convergence effect to us is a turbulence but also a moment. Today, this effect, which originally comes from the techniques convergence, has detonated in different nations and various places; crossing-industries competition turns to be more and more common around the world. To accommodate our nation to this trend, the primary strategy proposed by government is to integrate administrations’ effort. Through policies making, including DCDP upgrading and validly relative regulation frameworks amending, every relative industry is able to restore enough energy and seize the moment, further, naturally turns to be a domain of market competition.

The legal challenges of ubiquitous healthcare

Whereas the burden of private nursing for the elderly is getting heavier, industrialized countries with an aging society are endeavoring to seek possibilities of reducing the unit healthcare cost, such as technology assistance, and even the introduction of the brand new care type or model, which is an emerging application field of increasing importance. The development of such kind of healthcare industry not only is suitable for aging societies but also coincides with the growing health management trend of modern people. Also, while the focus on acute diseases in the past has changed to chronic diseases which are common to most citizens, the measuring and monitoring of physiological indicators, such as blood pressure, pulse, blood sugar and uric acid have critical effects on condition control. However, it will mean huge financial and physical burdens to the elderly or suffering from chronic diseases if they need to travel to hospitals to measure these physiological indicators. At this moment, an economical, reliable and timely physiological information collection and transfer system will be technology with good potential. For this reason, the purpose of this study is to investigate the potential business opportunities by applying the emerging information technology (IT) to the healthcare industry and the derivative legal and regulatory issues, with a focus on the seamless healthcare industry. It is hoped that by assessing the opportunity and risk in terms of legal and strategic analysis, we can single out the potential imbalance of fitting seamless healthcare, an IT-enabled service (ITeS), in the conventional control framework, and thereby establish a legal environment more appropriate for the development of the seamless healthcare industry. Referring to the existing electronic healthcare classification, the industry is divided into the following four blocks: electronic content provider, electronic product provider, electronic linking service provider and electronic passport service provider. Also, by depicting the outlook of the industry, the mode of application and the potential and common or special legal problems of different products are clarified. Given that health information collected, stored and transferred by electronic means involves unprecedented risk in information privacy and security, and that the appropriate control of such risk will affect the consumer’s faith in and willingness to subscribe seamless healthcare services, this study analyzed the privacy framework of the USA, the EU and Taiwan. Results indicate that future privacy legislation in Taiwan should include the protection for non-computer-processed personal information, expand the scope and occupation of applications, reinforce control incentives, and optimize the privacy protection mechanism. Further, only when service providers have the correct and appropriate concept of privacy protection can the watch-and-wait attitude of consumers be eliminated. These can help to promote subsequent development of the industry in the future. Due to the booming international trade as a result of globalization, and the gradual opening of the domestic telecommunication and healthcare markets following Taiwan’s entry into the WTO, transnational distance healthcare will gradually become a reality. However, the determination of the qualifications of practitioners is the prerequisite of transnational healthcare services. Taiwan may also consider lowering the requirements for physicians to practice in other countries and thereby to enhance the export competitiveness of Taiwan’s healthcare industry by means of distance healthcare via endorsement or reciprocity. Lastly, whereas the risks distance healthcare involves are higher than conventional healthcare services, the sharing of burdens and disputes over applicable laws in case of damages are the gray areas for executive control or judicial practice intervention. For this reason, service providers are unwilling to enter the market because the risks are too unpredictable. Therefore, this study recommends that the insurance system for distance healthcare should be the focus of future studies in order to promote the development of the industry.

TOP