The Tax Benefit of “Act for Establishment and Administration of Science Parks” and the Relational Norms for Innovation
“Act for Establishment and Administration of Science Parks” was promulgated in 1979, and was amended entirely in May 15, 2018, announced in June 6. The title was revised from “Act for Establishment and Administration of Science ‘Industrial’ Parks” to “Act for Establishment and Administration of Science Parks” (it would be called “the Act” in this article). It was a significant transition from traditional manufacture into technological innovation.
For encouraging different innovative technology enter into the science park, there is tax benefit in the Act. When the park enterprises import machines, equipment, material and so on from foreign country, the import duties, commodity tax, and business tax shall be exempted; moreover, when the park enterprises export products and services, it will have given favorable business and commodity tax free.[1] Furthermore, the park bureaus also exempt collection of land rent.[2] If they have approval for importing or exporting products, they do not need to apply for permission.[3] In the sub-law, there is also regulations of bonding operation.[4] To sum up, for applying the benefit of the act, enterprises approved for establishment in science parks still require to manufacture products. Such regulations are confined to industrial industry. Innovative companies dedicate in software, big data, or customer service, rarely gain benefits from taxation.
In other norms,[5] there are also tax deduction or exemption for developing innovative industries. Based on promoting innovation, the enterprises following the laws of environmental protection, laborers’ safety, food safety and sanitation,[6] or investing in brand-new smart machines for their own utilize,[7] or licensing their intellectual property rights,[8] can deduct from its taxable income. In addition, the research creators from academic or research institutions,[9] or employee,[10] can declare deferral of the income tax payable for the shares distributed. In order to assist new invested innovative enterprises,[11] there are also relational benefit of tax. For upgrading the biotech and new pharmaceuticals enterprises, when they invest in human resource training, research and development, they can have deductible corporate income tax payable.[12] There is also tax favored benefits for small and medium enterprises in using of land, experiment of research, technology stocks, retaining of surplus, and additional employees hiring.[13] The present norms of tax are not only limiting in space or products but also encouraging in “research”. In other word, in each steps of the research of innovation, the enterprises still need to manufacture products from their own technology, fund and human resources. If the government could encourage open innovation with favored taxation, it would strengthen the capability of research and development for innovative enterprises.
Supporting the innovation by taxation, the government can achieve the goal of scientific development more quickly and encourage them accepting guidance. “New York State Business Incubator and Innovation Hot Spot Support Act” can be an example, [14]the innovative enterprises accepting the guidance from incubators will have the benefit of tax on “personal income”, “sales and use” and “corporation franchise”. Moreover, focusing on key industries and exemplary cases, there are also the norms of tax exemption and tax abatement in China for promoting the development of technology.[15]The benefit of tax is not only in research but also in “the process of research”.
To sum up, the government of Taiwan provides the benefit of tax for advancing the competition of outcomes in market, and for propelling the development of innovation. In order to accelerate the efficiency of scientific research, the government could draw lessons from America and China for enacting the norms about the benefit of tax and the constitution of guidance.
[1] The Act §23.
[2] Id. §24.
[3] Id. §25.
[4] Regulations Governing the Bonding Operations in Science Parks.
[5] Such as Act for Development of Small and Medium Enterprises, Statute for Industrial Innovation, Act for the Development of Biotech and New Pharmaceuticals Industry.
[6] Statute for Industrial Innovation §10.
[7] Id. §10-1.
[8] Id. §12-1.
[9] Id. §12-2.
[10] Id. §19-1.
[11] Id. §23-1, §23-2, §23-3.
[12] Act for the Development of Biotech and New Pharmaceuticals Industry §5, §6, §7.
[13] Act for Development of Small and Medium Enterprises Chapter 4: §33 to §36-3.
[14] New York State Department of Taxation and Finance Taxpayer Guidance Division, New York State Business Incubator and Innovation Hot Spot Support Act, Technical Memorandum TSB-M-14(1)C, (1)I, (2)S, at 1-6 (March 7, 2014), URL:http://www.wnyincubators.com/content/Innovation%20Hot%20Spot%20Technical%20Memorandum.pdf (last visited:December 18, 2019).
[15] Enterprise Income Tax Law of the People’s Republic of China Chapter 4 “Preferential Tax Treatments”: §25 to §36 (2008 revised).
I.Introduction Having sustained the negative repercussions following the global financial crisis of 2008, Taiwan’s average economic growth rate decreased from 4.4 percent (during 2000-2007 years) to 3 percent (2008-2012). This phenomenon highlighted the intrinsic problems the Taiwanese economic growth paradigm was facing, seen from the perspective of its development momentum and industrial framework: sluggish growth of the manufacturing industries and the weakening productivity of the service sector. Moreover, the bleak investment climate of the post-2008 era discouraged domestic investors injecting capital into the local economy, rendering a prolonged negative investment growth rate. To further exacerbation, the European Debt Crisis of 2011 – 2012 has impacted to such detriment of private investors and enterprises, that confidence and willingness to invest in the private sector were utterly disfavored. It can be observed that as Taiwan’s industrial core strength is largely concentrated within the the manufacturing sector, the service sector, on the other hand, dwindles. Similarly, the country’s manufacturing efforts have been largely centered upon the Information & Communications Technology (ICT) industry, where the norm of production has been the fulfillment of international orders in components manufacturing and Original Equipment Manufacturing (OEM). Additionally, the raising-up of society’s ecological awareness has further halted the development of the upstream petrochemical and metal industry. Consumer goods manufacturing growth impetus too has been stagnated. Against the backdrop of the aforementioned factors at play as well as the competitive pressure exerted on Taiwan by force of the rapid global and regional economic integration developments, plans to upgrade and transform the existing industrial framework, consequently, arises out as an necessary course of action by the state. Accordingly, Taiwan’s Executive Yuan approved and launched the “Industrial Upgrading and Transformation Action Plan”, on the 13th of October 2014, aiming to reform traditional industries, reinforcing core manufacturing capacities and fostering innovative enterprises, through the implementation of four principal strategies: Upgrading of Product Grade and Value, Establishment of Complete Supply Chain, Setting-up of System Integration Solutions Capability, Acceleration of Growth in the Innovative Sector. II.Current challenges confronting Taiwanese industries 1.Effective apportionment of industrial development funds Despite that Research and Development (R&D) funds takes up 3.02% of Taiwan’s national GDP, there has been a decrease of the country’s investment in industrial and technology research. Currently Taiwan’s research efforts have been directed mostly into manufacturing process improvement, as well as into the high-tech sector, however, traditional and service industries on the other hand are lacking in investments. If research funds for the last decade could be more efficiently distributed, enterprises would be equally encouraged to likewise invest in innovation research. However, it should be noted that Taiwan’s Small and Medium Enterprises (SME) based on their traditional developmental models, do not place research as their top priority. Unlike practices in countries such as Germany and Korea, the research fund input by private enterprises into academic and research institutions is still a relatively unfamiliar exercise in Taiwan. With regards to investment focus, the over-concentration in ICTs should be redirected to accommodate growth possibilities for other industries as well. It has been observed that research investments in the pharmaceutical and electric equipment manufacturing sector has increased, yet in order to not fall into the race-to-the-bottom trap for lowest of costs, enterprises should be continually encouraged to develop high-quality and innovative products and services that would stand out. 2.Human talent and labor force issues Taiwan’s labor force, age 15 to 64, will have reached its peak in 2015, after which will slowly decline. It has been estimated that in 2011 the working population would amount to a meager 55.8%. If by mathematical deduction, based on an annual growth rate of 3%, 4% and 5%, in the year 2020 the labor scarcity would increase from 379,000, 580,000 to 780,000 accordingly. Therefore, it is crucial that productivity must increase, otherwise labor shortage of the future will inevitably stagnate economic growth. Notwithstanding that Taiwan’s demographical changes have lead to a decrease in labor force; the unfavorable working conditions so far has induced skilled professionals to seek employment abroad. The aging society along with decrease in birth rates has further exacerbated the existing cul-de-sac in securing a robust workforce. In 1995 the employment rate under the age of 34 was 46.35%, yet in 2010 it dropped to a daunting 37.6%. 3.Proportional land-use and environmental concerns Taiwan’s Environmental Impact Assessment (EIA) is a time-consuming and often unpredictable process that has substantially deterred investor’s confidence. Additionally, there exists a disproportionate use of land resources in Taiwan, given that demand for its use predominantly stems from the northern and middle region of the country. Should the government choose to balance out the utilization of land resources across Taiwan through labor and tax policies, the situation may be corrected accordingly. III.Industrial Upgrading and Transformation Strategies The current action plan commences its implementation from October 2014 to end of December 2024. The expected industrial development outcomes are as follows: (1) Total output value of the manufacturing sector starting from 2013 at NTD 13.93 trillion is expected to grow in 2020 to NTD 19.46 trillion. (2) Total GDP of the service sector, starting at 3.03 trillion from 2011 is expected to grow in 2020 to 4.75 trillion NTD. 1.Strategy No.1 : Upgrading of product grade and value Given that Taiwan’s manufacturing industry’s rate for added value has been declining year after year, the industry should strive to evolve itself to be more qualitative and value-added oriented, starting from the development of high-end products, including accordingly high-value research efforts in harnessing essential technologies, in the metallic materials, screws and nuts manufacturing sector, aviation, petrochemical, textile and food industries etc. (1) Furtherance of quality research Through the employment of Technology Development Program (TDP) Organizations, Industrial TDP and Academic TDP, theme-based and pro-active Research and Development programs, along with other related secondary assistance measures, the industrial research capability will be expanded. The key is in targeting research in high-end products so that critical technology can be reaped as a result. (2) Facilitating the formation of research alliances with upper-, mid- and downstream enterprises Through the formation of research and development alliances, the localization of material and equipment supply is secured; hence resulting in national autonomy in production capacity. Furthermore, supply chain between industrial component makers and end-product manufacturers are to be conjoined and maintained. National enterprises too are to be pushed forth towards industrial research development, materializing the technical evolution of mid- and downstream industries. (3) Integrative development assistance in Testing and Certification The government will support integrative development in testing and certification, in an effort to boost national competitive advantage thorough benefitting from industrial clusters as well as strengthening value-added logistics services, including collaboration in related value-added services. (4) Establishment of international logistics centre Projection of high-value product and industrial cluster image, through the establishment of an international logistics centre. 2.Strategy No.2 : Establishment of a Complete Supply Chain The establishing a robust and comprehensive supply chain is has at its aim transforming national production capabilities to be sovereign and self-sustaining, without having to resort to intervention of foreign corporations. This is attained through the securing of key materials, components and equipments manufacturing capabilities. This strategy finds its application in the field of machine tool controllers, flat panel display materials, semiconductor devices (3D1C), high-end applications processor AP, solar cell materials, special alloys for the aviation industry, panel equipment, electric vehicle motors, power batteries, bicycle electronic speed controller (ESC), electrical silicon steel, robotics, etc. The main measures listed are as follows: (1) Review of industry gaps After comprehensive review of existing technology gaps depicted by industry, research and academic institutions, government, strategies are to be devised, so that foreign technology can be introduced, such as by way of cooperative ventures, in order to promote domestic autonomous development models. (2) Coordination of Research and Development unions – building-up of autonomous supply chain. Integrating mid- and downstream research and development unions in order to set up a uniform standard in equipment, components and materials in its functional specifications. (3) Application-theme-based research programs Through the release of public notice, industries are invited to submit research proposals focusing on specific areas, so that businesses are aided in developing their own research capabilities in core technologies and products. (4) Promotion of cross-industry cooperation to expand fields of mutual application Continuously expanding field of technical application and facilitating cross-industry cooperation; Taking advantage of international platform to induce cross-border technical collaboration. 3.Strategy No.3 : Setting-up of System Integration Solutions capability Expanding turnkey-factory and turnkey-project system integration capabilities, in order to increase and stimulate export growth; Combination of smart automation systems to strengthen hardware and software integration, hence, boosting system integration solution capacity, allowing stand-alone machinery to evolve into a total solution plant, thus creating additional fields of application and services, effectively expanding the value-chain. These type of transitions are to be seen in the following areas: turnkey-factory and turnkey-project exports, intelligent automated manufacturing, cloud industry, lifestyle (key example: U-Bike in Taipei City) industry, solar factory, wood-working machinery, machine tools, food/paper mills, rubber and plastic machines sector. Specific implementation measure s includes: (1) Listing of national export capability – using domestic market as test bed for future global business opportunities Overall listing of all national system integration capabilities and gaps and further assistance in building domestic “test beds” for system integration projects, so that in the future system-integration solutions can be exported abroad, especially to the emerging economies (including ASEAN, Mainland China) where business opportunities should be fully explored. The current action plan should simultaneously assist these national enterprises in their marketing efforts. (2) Formation of System Integration business alliances and Strengthening of export capability through creation of flagship team Formation of system integration business alliances, through the use of national equipment and technology, with an aim to comply with global market’s needs. Promotion of export of turnkey-factory and turnkey-projects, in order to make an entrance to the global high-value system integration market. Bolstering of international exchanges, allowing European and Asian banking experts assist Taiwanese enterprises in enhancing bids efforts. (3) Establishing of financial assistance schemes to help national enterprises in their overseas bidding efforts Cooperation with financial institutes creating financial support schemes in syndicated loans for overseas bidding, in order to assist national businesses in exporting their turnkey-factories and turnkey-solutions abroad. 4. Strategy No.4 : Acceleration of growth in the innovative sectors Given Taiwan economy’s over-dependence on the growth of the electronics industry, a new mainstream industry replacement should be developed. Moreover, the blur distinction between the manufacturing, service and other industries, presses Taiwan to develop cross-fields of application markets, so that the market opportunities of the future can be fully explored. Examples of these markets include: Smart Campus, Intelligent Transportation System, Smart Health, Smart City, B4G/5G Communications, Strategic Service Industries, Next-Generation Semiconductors, Next-Generation Visual Display, 3D Printing, New Drugs and Medical Instruments, Smart Entertainment, Lifestyle industry (for instance the combination of plan factory and leisure tourism), offshore wind power plant, digital content (including digital learning), deep sea water. Concrete measures include: (1) Promotion of cooperation between enterprises and research institutions to increase efficiency in the functioning of the national innovation process Fostering of Industry-academic cooperation, combining pioneering academic research results with efficient production capability; Cultivation of key technology, accumulation of core intellectual property, strengthening integration of industrial technology and its market application, as well as, establishment of circulation integration platform and operational model for intellectual property. (2) Creating the ideal Ecosystem for innovation industries Strategic planning of demo site, constructing an ideal habitat for the flourishing of innovation industries, as well as the inland solution capability. Promotion of international-level testing environment, helping domestic industries to be integrated with overseas markets and urging the development of new business models through open competition. Encouraging international cooperation efforts, connecting domestic technological innovation capacities with industries abroad. (3) Integration of Cross-Branch Advisory Resources and Deregulation to further support Industrial Development Cross-administrations consultations further deregulation to support an ideal industrial development environment and overcoming traditional cross-branch developmental limitations in an effort to develop innovation industries. IV. Conclusion Taiwan is currently at a pivotal stage in upgrading its industry, the role of the government will be clearly evidenced by its efforts in promoting cross-branch/cross-fields cooperation, establishing a industrial-academic cooperation platform. Simultaneously, the implementation of land, human resources, fiscal, financial and environmental policies will be adopted to further improve the investment ambient, so that Taiwan’s businesses, research institutions and the government could all come together, endeavoring to help Taiwan breakthrough its currently economic impasse through a thorough industrial upgrading. Moreover, it can be argued that the real essence of the present action plan lies in the urge to transform Taiwan’s traditional industries into incubation centers for innovative products and services. With the rapid evolution of ICTs, accelerating development and popular use of Big Data and the Internet of Things, traditional industries can no longer afford to overlook its relation with these technologies and the emerging industries that are backed by them. It is only through the close and intimate interconnection between these two industries that Taiwan’s economy would eventually get the opportunity to discard its outdated growth model based on “quantity” and “cost”. It is believed that the aforementioned interaction is an imperative that would allow Taiwanese industries to redefine its own value amidst fierce global market competition. The principal efforts by the Taiwanese government are in nurturing such a dialogue to occur with the necessary platform, as well as financial and human resources. An illustration of the aforementioned vision can be seen from the “Industrie 4.0” project lead by Germany – the development of intelligent manufacturing, through close government, business and academic cooperation, combining the internet of things development, creating promising business opportunities of the Smart Manufacturing and Services market. This is the direction that Taiwan should be leading itself too. References 1.Executive Yuan, Republic of China http://www.ey.gov.tw/en/(last visited: 2015.02.06) 2.Industrial Development Bureau, Ministry of Economic Affairs http://www.moeaidb.gov.tw/(last visited: 2015.02.06) 3.Industrial Upgrading and Transformation Action Plan http://www.moeaidb.gov.tw/external/ctlr?PRO=filepath.DownloadFile&f=policy&t=f&id=4024(last visited: 2015.02.06)
Analyzing the Framwork of the Regulation「Act For The Development of Biotech And New Pharmaceuticals Industry」in TaiwanTaiwan Government passed The「Act for the Development of Biotech and New Pharmaceuticals Industry」for supporting the biopharmaceutical industry. The purpose of the Act is solely for biopharmaceutical industry, and building the leading economic force in Taiwan. To fulfill this goal, the Act has enacted regulations concerning funding, taxation and recruitment especially for the biopharmaceutical industry. The Act has been seen as the recent important law in the arena of upgrading industry regulation on the island. It is also a rare case where single legislation took place for particular industry. After the Act came into force, the government has promulgated further regulations to supplement the Act, including Guidance for MOEA-Approved Biotech and New Pharmaceuticals Company Issuing Stock Certificate, Deductions on Investments in R&D and Personnel Training of Biotech and New Pharmaceuticals Company, Guidance for Deduction Applicable to Shareholders of Profit-Seeking Enterprises -Biotech and New Pharmaceuticals Company etc. The following discussions are going to introduce the Act along with related incentive measures from an integrated standpoint. 1 、 Scope of Application According to Article 3 of the Act, 「Biotech and New Pharmaceuticals Industry」 refers to the industry that deals in New Rugs and High-risk Medical devices used by human beings, animals, and plants; 「Biotech and New Pharmaceuticals Company」 refers to a company in the Biotech and New Pharmaceuticals Industry that is organized and incorporated in accordance with the Company Act and engages in the research, development, and manufacture of new drugs and high-risk medical devices. Thus, the Act applies to company that conducts research and manufacture product in new drug or high-risk medical devices for human and animal use. Furthermore, to become a Biotech and New Pharmaceuticals Company stipulated in the Act, the Company must receive letter of approval to establish as a Biotech and New Pharmaceuticals Company valid for five years. Consequently, company must submit application to the authority for approval by meeting the following requirements: (1) Companies that conduct any R&D activities or clinical trials must receive permission, product registration, or proof of manufacture for such activities from a competent authority. However, for those conducted these activities outside the country will not apply. (2) When applied for funding for the previous year or in the same year, the expense on R&D in the previous year exceeds 5% of the total net revenue within the same year; or the expenses exceeds 10% of the total capital of the company. (3) Hired at least five R&D personnel majored in biotechnology. For New Drug and High-Risk Medical Device are confined in specific areas. New Drug provided in the Act refers to a drug that has a new ingredient, a new therapeutic effect or a new administration method as verified by the central competent authorities. And High-Risk Medical Device refers to a type of Class III medical devices implanted into human bodies as verified by the central competent authorities. Therefore, generic drug, raw materials, unimplanted medical device, and medical device are not qualified as type III, are all not within the scope of the Act and are not the subject matter the Act intends to reward. 2 、 Tax Benefits Article 5, 6 and 7 provided in the Act has followed the footsteps of Article 6 and 8 stipulated of the Statute, amending the rules tailored to the biopharmaceutical industry, and provided tax benefits to various entities as 「Biotech and New Pharmaceuticals Company」, 「Investors of Biotech and New Pharmaceuticals Industry」, 「Professionals and Technology Investors」. (1) Biotech and New Pharmaceuticals Company In an effort to advance the biopharmaceutical industry, alleviate financial burden of the companies and strengthen their R&D capacity. The Act has provided favorable incentive measures in the sector of R&D and personnel training. According to Article 5: 「For the purpose of promoting the Biotech and New Pharmaceuticals Industry, a Biotech and New Pharmaceuticals Company may, for a period of five years from the time it is subject to profit-seeking enterprise income tax payable, enjoy a reduction in its corporate income tax payable, for up to 35% of the total funds invested in research and development (R&D) and personnel training each year.」 Consequently, company could benefit through tax deduction and relieve from the stress of business operation. Moreover, in supporting Biotech and New Pharmaceutical Company to proceed in R&D and personnel training activities, the Act has set out rewards for those participate in ongoing R&D and training activities. As Article 5 provided that」 If the R&D expenditure of a particular year exceeds the average R&D expenditure of the previous two years, or if the personnel training expenditure of a particular year exceeds the average personnel training expenditure of the pervious two years, 50% of the exceed amount in excess of the average may be used to credit against the amount of profit-seeking enterprise income tax payable. 「However, the total amount of investment credited against by the payable corporate income tax in each year shall not exceed 50% of the amount of profit-seeking enterprise income tax payable by a Biotech and New Pharmaceuticals Company in a year, yet this restriction shall not apply to the amount to be offset in the last year of the aforementioned five-year period. Lastly, Article 5 of the Act shall not apply to Biotech and New Pharmaceutical Company that set up headquarters or branches outside of Taiwan. Therefore, to be qualified for tax deduction on R&D and personnel training, the headquarters or branches of the company must be located in Taiwan. (2) Investors of Biotech and New Pharmaceuticals Company To raise funding, expand business development, and attract investor continuing making investments, Article 6 of the Act has stated that 「In order to encourage the establishment or expansion of Biotech and New Pharmaceuticals Companies, a profit-seeking enterprise that subscribes for the stock issued by a Biotech and New Pharmaceuticals Company at the time of the latter's establishment or subsequent expansion; and has been a registered shareholder of the Biotech and New Pharmaceuticals Company for a period of 3 years or more, may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its profit-seeking enterprise income tax payable for up to 20% of the total amount of the price paid for the subscription of shares in such Biotech and New Pharmaceuticals Company.」 Yet 「If the afore-mentioned profit-seeking enterprise is a venture capital company (「VC」), such VC corporate shareholders may, for a period of five years from the fourth anniversary year of the date on which the VC becomes a registered shareholder of the subject Biotech and New Pharmaceuticals Company, enjoy a reduction in their profit-seeking enterprise income tax payable based on the total deductible amount enjoyed by the VC under Paragraph 1 hereof and the shareholders' respective shareholdings in the VC.」 The government enacted this regulation to encourage corporations and VC to invest in biotech and new pharmaceutical company, and thus provide corporate shareholders with 20% of profit-seeking enterprise income tax payable deduction, and provide VC corporate shareholders tax deduction that proportion to its shareholdings in the VC. (3) Top Executives and Technology Investors Top Executives refer to those with biotechnology background, and has experience in serving as officer of chief executive (CEO) or manager; Technology Investors refer to those acquire shares through exchange of technology. As biopharmaceutical industry possesses a unique business model that demands intensive technology, whether top executives and technology investors are willing to participate in a high risk business and satisfy the needs of industry becomes a critical issue. Consequently, Article 7 of the Act stated that 「In order to encourage top executives and technology investors to participate in the operation of Biotech and New Pharmaceuticals Companies and R&D activities, and to share their achievements, new shares issued by a Biotech and New Pharmaceuticals Company to top executives and technology investors (in return of their knowledge and technology) shall be excluded from the amount of their consolidated income or corporate income of the then current year for taxation purposes; provided, however, that if the title to the aforesaid shares is transferred with or without consideration, or distributed as estate, the total purchase price or the market value of the shares at the time of transfer as a gift or distribution as estate shall be deemed income generated in that tax year and such income less the acquisition cost shall be reported in the relevant income tax return.」 Additionally, 「For the title transfer of shares under the preceding paragraph, the Biotech and New Pharmaceuticals Company concerned shall file a report with the local tax authorities within thirty 30 days from the following day of the title transfer.」 Purpose of this regulation is to attract top executives and technology personnel for the company in long-term through defer taxation. Moreover, the Biotech and New Pharmaceutical Company usually caught in a prolong period of losses, and has trouble financing through issuing new shares, as stipulated par value of each share cannot be less than NTD $10.Thus, in order to offer top executive and technology investors incentives and benefits under such circumstances, Article 8 has further provided that」Biotech and New Pharmaceutical Companies may issue subscription warrants to its top executives and technology investors, provided that the proposal for the issuance of the aforesaid subscription warrants shall pass resolution adopted by a majority votes of directors attended by at least two-thirds (2/3) of all the directors of the company; and be approved by the competent authorities. Holders of the subscription warrants may subscribe a specific number of shares at the stipulated price. The amount of stipulated price shall not be subject to the minimum requirement, i.e. par value of the shares, as prescribed under Article 140 of the Company Act. Subscription of the shares by exercising the subscription warrant shall be subject to income tax in accordance with Article 7 hereof. if a Biotech and New Pharmaceutical Company issue new shares pursuant to Article 7 hereof, Article 267 of the Company Act shall not apply. The top executives and technology investors shall not transfer the subscription warrant acquired to pursuant to this Article.」 These three types of tax benefits are detailed incentive measures tailor to the biopharmaceutical industry. However, what is noteworthy is the start date of the benefits provided in the Act. Different from the Statue, the Act allows company to enjoy these benefits when it begins to generate profits, while the Statute provides company tax benefits once the authority approved its application in the current year. Thus, Biotech and New Pharmaceuticals Company enjoys tax benefits as the company starts to make profit. Such approach reflects the actual business operation of the industry, and resolves the issue of tax benefits provided in the Statue is inapplicable to the biopharmaceutical industry. 3 、 Technical Assistance and Capital Investment Due to the R&D capacity and research personnel largely remains in the academic circle, in order to encourage these researchers to convert R&D efforts into commercial practice, the government intends to enhance the collaboration among industrial players, public institutions, and the research and academic sectors, to bolster the development of Biotech and New Pharmaceuticals Company. However, Article 13 of Civil Servants Service Act prohibits officials from engaging in business operation, the Act lifts the restriction on civil servants. According to Article 10 of the Act provided that」For a newly established Biotech and New Pharmaceuticals Company, if the person providing a major technology is a research member of the government research organization, such person may, with the consent of the government research organization, acquired 10% or more of the shares in the Biotech and New Pharmaceuticals Company at the time of its establishment, and act as founder, director, or technical adviser thereof. In such case, Article 13 of the Civil Servants Service Act shall not apply. And the research organization and research member referred to thereof shall be defined and identified by the Executive Yuan, in consultation with the Examination Yuan.」 This regulation was enacted because of the Civil Servants Services Act provided that public officials are not allowed to be corporate shareholders. However, under certain regulations, civil servants are allowed to be corporate shareholders in the sector of agriculture, mining, transportation or publication, as value of the shares cannot exceed 10% of the total value of the company, and the civil servant does not served in the institution. In Taiwan, official and unofficial research institution encompasses most of the biotechnology R&D capacity and research personnel. If a researcher is working for a government research institution, he would be qualified as a public servant and shall be governed by the Civil Servants Service Act. As a result of such restriction, the Act has lifted the restriction and encouraged these researchers to infuse new technologies into the industry. At last, for advancing the development of the industry, Article 11 also provided that 」R&D personnel of the academic and research sectors may, subject to the consent of their employers, served as advisors or consultants for a Biotech and New Pharmaceuticals Company.」 4 、 Other Regulations For introducing and transferring advanced technology in support of the biopharmaceutical industry, Article 9 stated that 「Organization formed with government funds to provide technical assistance shall provide appropriate technical assistance as may be necessary.」 Besides technical assistance, government streamlines the review process taken by various regulatory authorities, in order to achieve an improved product launch process result in faster time-to-market and time-to profit. As Article 12 provided that 「the review and approval of field test, clinical trials, product registration, and others, the central competent authorities shall establish an open and transparent procedure that unifies the review system.」
The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of HealthThe opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health Li-Ting Tsai Scientific research improves the well-being of all mankind, the data sharing on medical and health promote the overall amount of energy in research field. For promoting the access of scientific data and research findings which was supported by the government, the U.S. government affirmed in principle that the development of science was related to the retention and accesses of data. The disclosure of information should comply with legal restrictions, and the limitation by time as well. For government-sponsored research, the data produced was based on the principle of free access, and government policies should also consider the actual situation of international cooperation[1]Furthermore, the access of scientific research data would help to promote scientific development, therefore while formulating a sharing policy, the government should also consider the situation of international cooperation, and discuss the strategy of data disclosure based on the principle of free access. In order to increase the effectiveness of scientific data, the U.S. National Institutes of Health (NIH) set up the Office of Science Policy (OSP) to formulate a policy which included a wide range of issues, such as biosafety (biosecurity), genetic testing, genomic data sharing, human subjects protections, the organization and management of the NIH, and the outputs and value of NIH-funded research. Through extensive analysis and reports, proposed emerging policy recommendations.[2] At the level of scientific data sharing, NIH focused on "genes and health" and "scientific data management". The progress of biomedical research depended on the access of scientific data; sharing scientific data was helpful to verify research results. Researchers integrated data to strengthen analysis, promoted the reuse of difficult-generated data, and accelerated research progress.[3] NIH promoted the use of scientific data through data management to verify and share research results. For assisting data sharing, NIH had issued a data management and sharing policy (DMS Policy), which aimed to promote the sharing of scientific data funded or conducted by NIH.[4] DMS Policy defines “scientific data.” as “The recorded factual material commonly accepted in the scientific community as of sufficient quality to validate and replicate research findings, regardless of whether the data are used to support scholarly publications. Scientific data do not include laboratory notebooks, preliminary analyses, completed case report forms, drafts of scientific papers, plans for future research, peer reviews, communications with colleagues, or physical objects, such as laboratory specimens.”[5] In other words, for determining scientific data, it is not only based on whether the data can support academic publications, but also based on whether the scientific data is a record of facts and whether the research results can be repeatedly verified. In addition, NIH, NIH research institutes, centers, and offices have had expected sharing of data, such as: scientific data sharing, related standards, database selection, time limitation, applicable and presented in the plan; if not applicable, the researcher should propose the data sharing and management methods in the plan. NIH also recommended that the management and sharing of data should implement the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The types of data to be shared should first in general descriptions and estimates, the second was to list meta-data and other documents that would help to explain scientific data. NIH encouraged the sharing of scientific data as soon as possible, no later than the publication or implementation period.[6] It was said that even each research project was not suitable for the existing sharing strategy, when planning a proposal, the research team should still develop a suitable method for sharing and management, and follow the FAIR principles. The scientific research data which was provided by the research team would be stored in a database which was designated by the policy or funder. NIH proposed a list of recommended databases lists[7], and described the characteristics of ideal storage databases as “have unique and persistent identifiers, a long-term and sustainable data management plan, set up metadata, organizing data and quality assurance, free and easy access, broad and measured reuse, clear use guidance, security and integrity, confidentiality, common format, provenance and data retention policy”[8]. That is to say, the design of the database should be easy to search scientific data, and should maintain the security, integrity and confidentiality and so on of the data while accessing them. In the practical application of NIH shared data, in order to share genetic research data, NIH proposed a Genomic Data Sharing (GDS) Policy in 2014, including NIH funding guidelines and contracts; NIH’s GDS policy applied to all NIHs Funded research, the generated large-scale human or non-human genetic data would be used in subsequent research. [9] This can effectively promote genetic research forward. The GDS policy obliged researchers to provide genomic data; researchers who access genomic data should also abide by the terms that they used the Controlled-Access Data for research.[10] After NIH approved, researchers could use the NIH Controlled-Access Data for secondary research.[11] Reviewed by NIH Data Access Committee, while researchers accessed data must follow the terms which was using Controlled-Access Data for research reason.[12] The Genomic Summary Results (GSR) was belong to NIH policy,[13] and according to the purpose of GDS policy, GSR was defined as summary statistics which was provided by researchers, and non-sensitive data was included to the database that was designated by NIH.[14] Namely. NIH used the application and approval of control access data to strike a balance between the data of limitation access and scientific development. For responding the COVID-19 and accelerating the development of treatments and vaccines, NIH's data sharing and management policy alleviated the global scientific community’s need for opening and sharing scientific data. This policy established data sharing as a basic component in the research process.[15] In conclusion, internalizing data sharing in the research process will help to update the research process globally and face the scientific challenges of all mankind together. [1]NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, organized from Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]The list of databases in details please see:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
Innovative Practice of Israel's Government ProcurementInnovative Practice of Israel's Government Procurement Government procurement is an important pillar of government services. Because of the huge number of government purchases, government procurement management play an important role in promoting public sector efficiency and building citizenship. Well-designed government procurement systems also help to achieve policy such as environmental protection, innovation, start-ups and the development of small and medium-sized enterprises. Nowadays, countries in the world, especially OECD countries, have been widely practiced with innovative procurement to stimulate innovation and start-ups, and call Innovation procurement can deliver solutions to challenges of public interest and ICTs can play a major role in this. However, in the OECD countries, in addition to the advanced countries that have been developed, many developing countries have also used government procurement to stimulate national R & D and innovation with remarkable results. Israel is one of the world's leading technology innovation centers, one of the most innovative economies in the world, continues to leverage its own strengths, support of technology entrepreneurship and unique environment, an international reputation in the high-tech industry, the spirit of technological innovation and novelty. Government procurement is a core element of the activities of Israeli government, agreement with suppliers and compliance with the Mandatory Tenders Law. The main challenge is how to ensure efficiency and maintain government performance while ensuring an equitable and transparent procurement process. Israel’s Mandatory Tenders Law has shown the central role played by the Israeli Supreme Court in creating and developing this law, even in the absence of any procurement legislation, based instead on general principles of administrative law. Once the project of creating a detailed body of public tendering law had been completed, and the legislator was about to step in, the Supreme Court was prepared to step out and transferring the jurisdiction to lower courts. The Knesset passed the Mandatory Tenders Law, and based on it the Government issued the various tendering regulations. Besides, Israel's various international agreements on government procurement, mainly GPA and other bilateral international agreements such as free trade agreements with Mexico and Colombia and free trade agreements and memoranda of understanding with the United States. The practical significance of these commitments can only be understood on the backdrop of Israel’s domestic preference and offset policies. These policies were therefore discussed and analyzed as they apply when none of the international agreements applies. The Challenge Tenders "How to solve the problem of overcrowding in the emergency department and the internal medicine department?" is the first of a series of "problem solicitations" released by the Israeli Ministry of Health which seeks to find a digital solution to the public health system problem, questions from the government while avoiding preconceived prejudices affect the nature of the solution, allowing multiple innovative ideas from different fields to enter the health system, make fair and transparent judgments about the ideal solution to the problem. In order to ensure transparency and integrity, equality, efficiency and competition in the decision-making process, the tender proposed by the Israeli Ministry of Health defines a two-stage tender process. The Ministry of Health of Israel, in order to improve the quality of medical care, shorten the waiting time for hospitalized patients, protect the dignity of patients and their families with patients as its center, and ensure their rights, while alleviating the burden of hospital staff, so as to pass the targeted treatment areas reduce the gap between various residential areas. The Israeli government deals with these issues through challenging tenders and offers a digital solution combined with innovative ideas. The initiative proposed through the development of public service projects can raise the level of public services in the country and help the government to reduce costs and achieve the purpose of promoting innovation with limited conceptual, technical and financial capabilities. In addition, due to the online operation of the challenging tender process throughout the entire process, fair and transparent procedures can be ensured, while public-private partnerships are encouraged to facilitate the implementation of the implementation plan.