South Korea’s Strategy for Reinforcing Protection of Corporate Trade Secrets-Trade Secret Protection Center

Preface

In order to increase the strength of addressing issues on the infringement of intellectual property for small and medium enterprises, Korean government launched Consultative Committee for Intellectual Property Policies, leading by Presidential Council on Intellectual property and conducting with Ministry of Culture, Sports and Tourism, Korean Intellectual Property Office and Ministry of Justice, to discuss how to reinforce efficiency on handling infringement of intellecual property and work on policy for intellectual property protection.

Korean government has considered trade secret as the core of corporations; however, corporations think little of it. For this reason, Korea Institute of Patent Information’s Trade Secret Protection Section, in charge of the Trade Secret Protection Center, works to avoid the outflow of business skills and trade secrets, to improve trade secret protection system, to raise awareness of trade secret protection and develops South Korea as an intellectual property power. This article aims to briefly introduce the standard management system, the diagnosis of corporate trade secret and the Trade Secret Certification Service which are schemed out by the Trade Secret Protection Center.

Explanation on Major Strategies

Trade Secret Diagnosis & Standard Management System

In an attempt to offer a diagnosis of current problems about trade secret management in corporations for drawing up suggestions for improvements, the Trade Secret Protection Center sets up a series of questions based on the five categories: organization policy management, document access management, staff management, physical management and information technology management. There are in total 32 questions with detailed sub-questions for knowing if corporations have set up regulations and if the regulations are followed; if the regulations are not followed, if they have strategy to tackle with violation. For example, the question for internet management is to examine on how corporation manages intranet and extranet. Some possible policies are to make them separated, to do authority control or to do nothing. Here is the procedure for diagnosis:

1.Preparation
Employees are asked to gather information regarding trade secret management and improvement opinions by a questionnaire.

2.Diagnosis
Get the result of how well corporation has done for trade secret management by analyzing the questionnaires.

3.Plan
Come up with solutions according to diagnosis.

4.Action
Provide suggestions with different levels of work.

Level

Description

A
(above 81 point, Excellent)

Well-formed trade secret management and great operation

B
(71-80 point, Good)

Limited strategy with law protection for trade secret outflow

C
(61-70 point, Average)

Weak strategy with a lack of law protection for trade secret outflow, management needed

D
(41-60 point, Fair )

Poor law protection for trade secret outflow, management needed badly

F
(below 40 point, Poor)

High Risk of trade secret outflow

The Trade Secret Protection Center will examine and offer staff training periodically in an effort to improve following aspects:

1.Corporation Management
(1)Avoid crucial information outflow
(2)Systemize issue handling and information authentication process

2.Organization Culture
(1)Convey the importance of information protection
(2)Decrease the incoordination among departments due to protecting key
information
(3)Build trade secret protection culture

3.Staff
(1)Provide long-term training for trade secret protection
(2)Build up ability of trade secret protection

The trade secret diagnosis is considered as a way to make trade secret the key intangible asset in corporations and even to increase the competitiveness and to create profits.

In addition to the trade secret diagnosis, the Trade Secret Protection Center further provides immature business with the standard management system which contains services with trade secret registration, level distinguishments, authority control, staff management, contract management and certification service. The primary goal of the standard management system is to help with production and maintenance of trade secret certification before issue occurs. When issue happens, the system is right here to submit certification of trade secret and guarantee to the court that nobody can access trade secrets except the possessor of the trade secret and the institution. In other words, the system is intended for following goals:

1.Efficientize Trade Secret Management
Save time, money and manpower. Manage trade secret and related information efficiently.

2.Raise Awareness of Trade Secret Protection Among Employees
Strengthen awareness and application of trade secret protection by using this system as daily work process

3.Link to the Trade Secret Certification Service
Prove the original document of trade secret with the time stamp of ownership for judicial evidences.

4.Link to Information Security Solution
Cooperate with various information security solutions, such as trade secret control and outflow block.

Trade Secret Certification Service

The Trade Secret Certification Service which is built to link to standard management system is put into practice in 2010 by Korean Intellectual Property Office. This service operates by taking the hash values from trade secret e-documents and combining them with authorized time values from trusted third-parties, thereby creating time stamps. Time stamps are then registered with the Korea Institute of Patent Information to prove the existence of original document of trade secrets, as well as and their initial dates of possession.

A legal basis is built for the Trade Secret Certification Service in 2014. Amendments of Unfair Competition Prevention and Trade Secret Protection Act indicate registration and proof of the Trade Secret Certification Service and explain that an institution with more than 3 qualified staff and required facilities is eligible to be a Trade Secret Certification Service institution. The Trade Secret Certification Service is characterized by the following properties:

1.Block Trade Secret Outflow Radically
Instead of the trade secret itself, this service only asks for hash value of e-records and the authorized time of ownership which make it more secure for corporations to manage trade secrets rather than maintaining under a third-party.

2.Various Electronic Records Available
Various types of electronic records are available in this service, such as documents, pictures and video files which could contain production process, laboratory notebook, blueprint, marketing records, financial records, selling information and customer information and contracts.

3.Institution with Credibility
It is inevitable that any piece of information could be leaked out; hence trade secret management should be executed by credible institution. For example, corporation can ask the Trade Secret Certification Service Institution to register an original document for a blueprint and get a certification. Then, the corporation can ask for new registration for modified blueprint as well. When issue occurs, the certification would be the proof of original document and time of ownership. As the Trade Secret Certification Service Institution gets legalized, the evidence of original document of trade secrets and initial dates of possession would get more convincible in court.

Conclusion

The trade secret diagnosis plays an essential role in understanding the level of trade secret management in corporations. The standard management system further provides with improvement and solution for trade secret protection based on diagnosis. In addition, legalized Trade Secret Certification Service also levitates the burden of proof on corporation. South Korea’s experience in trade secret management could be a good example for Taiwan to follow.

※South Korea’s Strategy for Reinforcing Protection of Corporate Trade Secrets-Trade Secret Protection Center,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=171&d=6697 (Date:2024/03/04)
Quote this paper
You may be interested
Introduction to Essential Data Governance and Management System(EDGS)

Introduction to Essential Data Governance and Management System(EDGS) 2022/12/30 I. Background   Along with organizations face the industrial, social and economic level of Digital Transformation trend brought by the development of emerging technology or the occurrences of disasters or emergencies(such as COVID-19), and so on. Inducing the increasing demand for transformation of digital governance and management. Including the board of directors and the top managements’ decision making, supervision to internal audit, internal control etc. It is necessary to establish and implement the digitized management measure of content or process step by step. Strengthening the reality, integrity and full disclosure of data, in order to improve the efficiency of organizational decision making, execution, supervision and management.   Although implementing the digitization process, brings convenience and efficacy to the organization, accompanied by risks. Digital data has characters of being easy to modify and spread. This often results in difficulty for the original version owner in proving the originator’s identity and then impacts rights protect. Additionally, when cooperating with others, the organizations may provide essential digital data to others, or receive others’ essential digital data. When data breaches or controversies occur, it is required to have measures assisting in the identification or prove the origin of the data. In order to delineate the responsibilities and enhance mutual trust.   Essential Data Governance and Management System(hereinafter referred to as, EDGS) is a management model which is to be introduced at the discretion of each organization. Looking forward to improve the degree of the ability in organizations’ digital and governance level progressively. Starting to improve the protected process of the digital data in the first place, reinforcing the long-term preservation of validity of the essential digital data. In order to guarantee the evidence capacity and reinforce the probative value by the time litigations has been instituted or the related competent authority investigates. II. Setting Objectives   The purpose of EDGS is to help organizations consolidate with existing internal auditing, internal control or other management process and then implement tweaks that establish an organizations’ essential data governance and management system that meets the requirements of EDGS. In order to attain the following benefits(as shown in Figure 1 below): a. Improve the digitalization level of governance and management in internal control, internal auditing or surveillance. b. Improve organizations’ cooperation, trust and the chance of digital transformation. c. Reinforce organizations to identify and manage the self-generated, provided or received external digital data. d. Reinforce organizations’ validity of evidence presented in litigation or the inspection certification of competent authority. Figure 1: Setting Objectives of EDGS III. Scope of Application   EDGS is designed to be applicable to all organizations, regardless of their type, size, and the products or services they provide. In addition, the requirement of EDGS are centered on the organizations’ essential data governance and management system process (as shown in Figure 2 below). The so-called organizations’ essential data governance and management system process refers to from the digital data process of generation, protection and maintenance to the digital evidence preservation information process of acquisition, maintenance and verification by setting management objectives in accordance with the management policies established by the organization. Figure 2: The Conceptual Flow Chart for the Organizations’ Essential Digital Data Governance and Management System Process IV. Process of Application   EDGS encourages organizations to link and reinforce the existing “process management” approach and “PDCA management” cycle(as shown in Figure 3 below) in developing, implementing and improving their essential data governance and management system. Figure 3: The “PDCA management” Cycle of EDGS V. Table of Contents   Chapters 0 to 4 of EDGS are the description of the system structure, scope of application, definition of terms and consideration factors; Chapters 5 to 10 are important management items. 0. Introduction  0.1. General Description  0.2. Target  0.3. Process Management  0.4. Management Cycle  0.5. Setting Objectives  0.6. Compatibility with other management systems 1. Scope of Application 2. Version Marking 3. Definition of Terms  3.1 Organization  3.2 Digital record  3.3 Identification Technology  3.4 Metadata  3.5 Hash Function  3.6 Hash Value  3.7 Time-Stamp 4. Organization Environment  4.1 Internal and External Issues  4.2 Stakeholders 5. Management Responsibility of Digital Governance and Management  5.1 Management Commitment  5.2 Management Policy  5.3 Management Objective Planning  5.4 Management Accountability and Communication 6. System Planning  6.1 Basic Requirements  6.2 Response to Risks and Opportunities  6.3 Change Planning 7. Support  7.1 Resources  7.2 Personnel  7.3 Equipment or System Environment  7.4 Communication Channels 8. Practice Process of Essential Digital Data Governance and Management  8.1 Generation, Maintenance and Protection of Digital Data  8.2 Acquisition, Maintenance and Verification of Digital Evidence Preservation Information 9 Performance Evaluation  9.1 Basic Requirements  9.2 Data Analysis  9.3 Internal Audit  9.4 Management Review 10 Improvement For the full text of the EDGS(Chinese Version), please refer to: https://stli.iii.org.tw/publish-detail.aspx?d=7198&no=58

Copyright Ownership for Outputs by Artificial Intelligence

Copyright Ownership for Outputs by Artificial Intelligence One. Introduction I. From Machine Learning to Deep Learning, AI is Thinking   The famous philosopher, mathematician and physicist René Descartes from France in the 17th century said: “Cogito ergo sum”. This is considered a radical skepticism in the context of philosophy. When a philosopher raises the question that how one person can be sure of his/her existence, it is not about the feeling, cognition or experience with the world. Rather, it is about thinking.   Artificial intelligence works like interconnected human neurons, with the logics and algorithms built with codes and processed with high speed. The nutrient it requires is the massive amount of data. In the past, artificial intelligence only works according to the logical setup and instructions from developers. In the era of machine learning today, humans have empowered machines with the capability of processing. This is achieved not by writing comprehensive and exhaustive rules. Rather, it is by making machines able to figure out rules on their own. In other words, all we need to do is to prepare data. Machines can be trained to think and judge. Artificial intelligence will eventually generate its outputs and start to create contents.   Image recognition is a good illustration of how machine learning works, as part of the wider AI. The identification of cats is a classic example. A large number of pictures and photos of cats are provided, with descriptions of features to train machines. The purpose is to train machines into building their own criteria as to what cats are about. According to the Proceedings of the Seventh IEEE International Conference on Computer Vision in 1999, image recognition is processed with the technology similar with neurons for visual recognition by primates[1].   Twenty years on, machine learning (as part of artificial intelligence) has come a long way. The number of neural network models, built on neurons, has grown exponentially[2]. Deep learning has been developed with layers of neurons. There are links only between neighbouring layers to reduce the number of variables and enhance the speed of computing. In the context of machine learning, learning is about the selection of an optimal solution from multiple variables[3]. Big data is fed into the man-made neural networks constructed in the computers so that they are constantly trained and learning. Hung-yi Lee[4], a scholar specialized in artificial intelligence in Taiwan, provides a simple analogy for this technology. Machine learning is like a human brain with one layer of neurons; whilst deep learning works with many neurons and hence can learn on their own, make judgement and establish logics[5]. In other words, artificial intelligence is capable of analysing, identifying and decision-making on its own, and human is becoming less relevant in this process. Artificial intelligence is able to think. This is not only a factual description, but also a trigger to fundamentally change the legal institution of nations. II. Who Owns the Outputs Generated with Thinking?   Over the long run, whether the legal institution and the society are ready to give artificial intelligence “quasi” right of personality is a topic worth exploring. In the immediate term, what normative models should be used to define the ownership of copyrights for the outputs and creations by artificial intelligence?   The decision on copyright ownership has always been a hot topic in the field of intellectual property. The legal system in the U.S. describes the protected entity for copyright as “the fruits of the intellectual labor”. Article 798 of the Civil Code in Taiwan says, “Fruits that fall naturally on an adjacent land are deemed to belong to the owner of such land, except if it is a land for public use”. The fruit, i.e. outputs generated by artificial intelligence, also falls into the society of rules governed by rights and obligations. Of course, it is necessary to first define and regulate the entity that owns the rights. This begs many fundamental questions in the context of copyright laws. Who owns the rights? The developers (perhaps on a pro-rata basis), data owners, or the companies that provide infrastructure to developers? Once the boundary of imagination and reality is pushed further, the ownership of rights is no longer limited to human creators and may be extended to artificial intelligence. Moreover, it is possible for governments to insist that copyrights are only for human creations and the intellectual property created by artificial intelligence may fall into the public domain and hence fall unprotected legally, given the significance of public interest involved.   This paper explores the copyright ownership for the outputs generated by artificial intelligence by systemically observing the real-life cases in the industry. This is followed with an analysis on the perspectives from the European Union, the United Kingdom and the United States. The purpose is to examine the contexts and normative models of artificial intelligence and copyrights and finally develop a preliminary framework for the regulation of artificial intelligence now and the future. Two. Creativity Capability of Artificial Intelligence Is a Reality   With artificial intelligence and Big Data driving the development of industries, the exploration with the construction and normative models of the legal system should start with the reflection of social values, so as to achieve the purpose of social order with laws and regulations.   The construction of the legal system for technology should be anchored on the observation of facts, given the rapid advancement and evolution of emerging technologies. The fact today is that artificial intelligence is being used for art creations such as musical composition, poetry and painting. Developers train artificial intelligence with massive data and enable deep learning to grasp the essence of artworks in order to generate outputs. Whether the ultimate purpose is commercial profitability or not, most of these outputs have reached a certain level of quality. Below is a brief introduction of creative techniques and new business models of artificial intelligence in music composition, poetry writing, painting and news writing. I. Original Music Generated with Deep Learning: Fast and User-friendly   The vibrant development of the Internet has created an online celebrity economy. Youtubers, Internet personalities, cyberstars, Wanghong (or internet fame in Mandarin) produce films or release podcasts to attract the audience for direct/indirect and commercial/non-profit-seeking purposes. The production of such films and live broadcasting, or the creation of original online or PC games creates the demand for background music or sound effects. Ed Newton-Rex, who earned a bachelor of arts degree in music from University of Cambridge, founded JukeDeck[6] after he went to a computer science class in Harvard University. JukeDeck is an online music generator, developed with deep learning(as part of artificial intelligence). This paper believes that JukeDeck meets the industry demand with two offerings[7]: (I) JukeDeck Rapid generation of pleasant and unique music with deep learning The algorithm design by Ed Newton-Rex with artificial intelligence is different from the generation of background music and other music by the websites that use loop audio files. JukeDeck generates music pleasing to the ears with one tone at a time and avoids repetitions by analyzing musical forms, harmonies and tones with deep learning, so that the users in pursuit of originality and unique can acquire the musical materials within approximately 30 seconds, without worrying that they sound similar with others[8]. Greater flexibility in length to create bespoke styles and feelings JukeDeck offers flexibility in the length of music, up to five minutes depending on the preference of users. An extension is possible by mixing up different fragments. It is also possible to define musical styles and formats, e.g. piano, folksongs, electro and ambient music[9], as well as the feelings to be aroused, such as uplifting and melancholic. The music generated by deep learning is different from the free or paid music databases which use the so-called canned music and suffer the problems of mismatches between the film length and music length[10]. (II) Amper Music   Amper Music was founded by the Hollywood songwriter Drew Silverstein (founder/CEO), Sam Estes and Michael Hobe[11] with the ambition to take a step further from music generation by artificial intelligence. In the spring of 2018, the company raised another $4 million for the development of music composition with artificial intelligence, the expansion of international markets and the recruitment of more talents. In the press release, Drew Silverstein said, “Amper’s rapid growth is a testament to how the massive growth of media requires a technological solution for music creation. Amper’s value stems not only from the means to collaborate and create music through AI, but also from its ability to help power media at a global scale.”[12]   Similar with JukeDeck’s appeal to the public, Amper Music’s artificial intelligence allows users with no musical experience to create real-time and order original music[13]. It supports all the media formats. All is required is the choice for rhythms, styles and musical instruments desired[14]. Meanwhile, Amper Music posits that its music is royalty free, and comes with a global, perpetual license when synced to the outputs. In other words, users do not have to worry about legal procedures or financial costs[15]. II. Writing Pens Take Flight: A Challenge to the Fundamental of Literary Creation and Trigger for Labor Transformation   Neuhumanismus (or Neohumanism) is about the achievement of self-mastery and humanity ideals through the study of classics. Compared with humanism, neohumanism places a greater focus on emotional expression and artistic creation. It also emphasizes the importance of language learning to self-realization of individuals.[16] After studying the works of 519 contemporary poets in the Chinese society, artificial intelligence has published modern poetry and made successful inroads to the world of literature traditionally driven by emotions and imaginations. In fact, it has posed a credible challenge to the human-centric humanism where only humans are endowed with the gift of artistic creativity. Artificial intelligence has been nominated for literary awards, evidenced of the quality of outputs generated by deep learning. With the support of massive data and analytics, it is only a matter of time for artificial intelligence to possess the literary creativity comparable to humans.   However, the concern for originality in literature and the issues surrounding plagiarism and copyrights are the key determinants that influence of literary creation by artificial intelligence. This begs the questions about the ethics of literary creation. It is necessary to start with an understanding of how artificial intelligence creates, before the analysis of ethical and regulatory frameworks. (I) Xiaoice’s Collection “Sunshine Misses Windows”   Xiaoice is the chatbot launched by Microsoft’s Software Technology Center Asia (STCA) in China in 2014. In 2017, Xiaoice published her collection of poems “Sunshine Misses Windows”[17], written by looking at pictures. The deep learning algorithms behind were co- developed by Wu Zhao-Zhong and Cheng Wen-Feng, two students in the Graduate Institute of Networking and Multimedia, National Taiwan University.   The artificial intelligence writes poetry with the following methodology[18]: Use of image recognition technology to identify the keywords in the pictures: The adoption of image recognition technology developed by Microsoft’s Software Technology Center Asia (STCA) to identify the nouns in the pictures such as the bridge, skies and trees and the adjectives that express feelings such as beautiful or annoying. Matching of keywords from the training database: The training data for the matching of keywords and poetry database was the works of a total of 519 contemporary poets since the 1920s. The purpose was to fill in the gap between keywords and training data. Generation of poems: deep learning trained in the language model with keywords to create poems Improvement of poems: literary professionals and readers invited to give ratings. Submission of writings as an anonymous author to improve Xiaoice’s capability.   The above is a summary of Xiaoice’s creative journey. Microsoft claims that the collection of poems was 100% written by Xiaoice, and it is the first collection of poems 100% written by artificial intelligence in history. The poems were not edited by humans and wrong characters were maintained as they were. The title “Sunshine Misses Windows” was also named by Xiaoice herself[19]. Despite all these, the originality and even the most fundamental “literality” of these poems are still questioned.   At the end of 2018, the Research Institute for Humanities and Social Sciences, Ministry of Science & Technology and National Taiwan University organized the forum “Culture and Technology II: AI’s Literature Dream — Sunshine Misses Windows. Does Humanity Have a Boundary?” The professor in the Department of Chinese Literature, National Taiwan University and the poet Tang Juan discussed Xiaoice’s works[20] and commented as a critic of contemporary poetry. Xiaoice uses extensively the same vocabulary (such as the beach). Unable to use punctures, she can only break sentences and lines. Most importantly, her writings do not reflect our times and real experience. In other words, Xiaoice’s poems do not possess the unique perspective and soul of poets and literary characters. This may be the outcome of her reading of works from 519 poets from the 1920s. As a result, she is not able to connect with our times and real life and finds it difficult to resonate the shared emotions of people today. Tang Juan’s comment is more than just about literature. It is also about the selection and sourcing of training data, a prerequisite for the development of artificial intelligence, as well as the cost and consideration for copyright licensing.   The research and development by corporates in artificial intelligence requires the corresponding and suitable training materials, particularly in the domain of literature. As commented by the poet Tang Juan, it requires extensive sources of contemporary works. It means the increasing difficulty to circumvent the works still protected by copyrights. If this cost consideration remains a hurdle, it is impossible to make improvements in further research. Put differently, the composition of training data is potentially a cost concern for copyright licensing. Before the legal system becomes well-developed and the establishment of consensus on the issues concerning training data, the possible infringement is an absolutely necessary balancing act for any robust developers and companies involved in artificial intelligence. (II) Yuurei Raita’s “The Day A Computer Writes A Novel”   In 2013, Nikkei started to offer the Nikkei Hoshi Shinichi Literary Award to outstanding short Si-Fi novels, as a tribute to the late science fiction writer Hoshi Shinichi[21]. Three years later, Yuurei Raita’s “The Day A Computer Writes A Novel” appeared on Nikkei’s list of acceptance for competition. Miss Yoko is the leading character in this 2000-character short sci-fi novel[22]. Raita-kun is in fact an artificial intelligence team “Wagamama artificial intelligence as a writer” led by Hitoshi Matsubara, President of the Japanese Society of Artificial Intelligence and a professor in Future University[23]. Below is a description of their deep learning techniques[24]: Analysis of writing styles from training data: The team provides training data as the learning basis for artificial intelligence. (For this competition, the data is approximately 1,000 short stories written by Hoshi Shinichi.) The purpose is to analyze the frequently used words, novel structures and characters. Resource integration by the team: The team integrates the analyzed data with online information, storyline programs, human emotions and settings, and decides on characters, contents and plots[25]. Researchers provide three instructions, i.e., when, the weather, doing what so that artificial intelligence automatically generates detailed and tangible contents. Automatic generation of new works: Artificial intelligence refines the details and polishes the texts, to generate the new story by Hoshi Shinichi with fragments such as: “The same temperature and humidity in the room is maintained as usual. Yoko sits idly on the sofa, dishevelled and playing a dull game uninterested.”   The procedures of novel contents generation described above indicate that artificial intelligence still relies on humans for setups and assistance. In contrast with the claim by the Microsoft team that Xiaoice is 100% artificial intelligence, the team in Japan confessed that artificial intelligence writing is still in a nascent stage.   At least in literature types such as novels, artificial intelligence still needs appropriate guidance from humans for necessary writing elements, in order to generate and connect fragments to establish the finalized pieces. In general, artificial intelligence can only be held responsible for 20% of work[26]. However, the development of technology continues at its pace. When it is no longer easy to differentiate a piece of creative writing is by humans or by machines, the limitation of copyright protection to human’s creative works will be an obsolete approach. (III) Tencent: Robot “Dreamwriter”   The above two AI writing teams focus on creative literature. In China, Tencent has developed Dreamwriter to rapidly generate news products. In the 2018 International Media Conference in Singapore[27] hosted by the East West Center, a think tank in the U.S. at the end of June 2018, Tencent demonstrated its translation engine. Speakers spoke in Chinese and the engine did simultaneous translation into English shown on the projector screen[28].   Tencent’s artificial intelligence “Dreamwriter” project started as a push engine for news flashes such as sports events. It later extended into financial and economic data and reporting, a field with extensive data and conducive to AI development and ML acceleration[29]. Dreamwriter only takes half to one second to generate a piece of news. It can generate approximately 5,000 articles per day, equivalent to the output of 208 journalists. This implies a transformation of labor requirements in journalism. Human reporters will be involved in in-depth coverage that requires creativity, industry knowledge and judgement[30], whilst basic and factual reporting will be completed by artificial intelligence. III. Brave New Work for Paintings: Rights Ownership in the Presence of Sophisticated Deep Learning   In the autumn/winter of 2018, the Paris-based AI team Obvious presented “Portrait of Edmond Belamy”[31] in Prints & Multiples auction in New York. This painting was sold for a surprising high price of[32] $432,000 (or over NT$13 million)[33], as the first AI-generated painting being auctioned. The Obvious team focuses on Generative Adversarial Network (GAN)[34], a hot topic for the development of deep learning. (I) Technique to Improve Deep Learning: Generative Adversarial Network (GAN)   The GAN technique was developed by Ian Goodfellow[35] in 2014 to promote and enhance deep learning by massively reducing the amount of training data required and cutting down on human intervention, assistance and involvement[36].   The GAN method can be illustrated in a high level by referring to the classical example of the image recognition for cats previously mentioned. The neural network model (as a deep learning technique) enables artificial intelligence to learn how to identify cats from a massive volume of pictures of cats. However, it is necessary for humans to train the machine by providing signs and feature descriptions for each picture. In contrast, the GAN technique is about the training of two competing networks,[37] i.e., a generative network and a discriminant network[38]. The generative network is responsible for generating the pictures that resemble real cats (i.e. made-believe cats) and the discriminant network reviews and determine whether the pictures are authentic. The two networks enhance capabilities by competing with each other. The idea is to improve the learning and competence of deep learning[39]. (II) Application in the Art of Paintings   The GAN method can be used to generate paintings such as “Portrait of Edmond Belamy”. It can also identify fake paintings. Founder/CEO Jensen Huang of Nvidia, a leading artificial intelligence company, said in a forum that the GAN technique allows one neural network to paint the pictures in the Picasso style and the other network to identify images and paintings with unprecedented discriminant capabilities[40]. The seventh year of the Lumen Prize gave the biggest award to a nude portrait generated with the GAN technique[41]. The GAN applications have been mushrooming – turning a scribble into an art, a low-definition picture into a high-definition one, an aerial graph into a photo[42].   Below is a brief description of the concepts and procedures for the Obvious research team’s completion of “Portrait of Edmond Belamy”[43]: Analysis of portraits from training data: A total of 15,000 portraits from the 14th century to the 20th century as the training data Generative network vs. discriminant network: The generative network generates paintings on the basis of training data. The discriminant network seeks to identity the difference from human-created paintings in order to improve the capability of the generative network. This process continues until the discriminant network is no longer to tell a machine-created painting from a human-created painting. (III) Ownership of Rights to High Economic Value of Artworks   The winning of the Lumen Prize in the UK by the nude portrait generated by artificial intelligence and the surprisingly high auction price paid for Portrait of Edmond Belamy are the testimony of the artificial intelligence’s creative capability. The ownership of the right to the monetary value of these artworks is a topic worthy of exploration.   “The development team ‘Obvious’ for ‘Portrait of Edmond Belamy’ posits that if the author is the person who paints the painting, it is artificial intelligence. If the author is the person who seeks to convey a message, it is us[44]. The human’s role is being undermined as deep learning technology becomes increasingly sophisticated. Going forward, can artificial intelligence become the owner of rights? What should be the regulatory framework for now? At this juncture, this paper conducts an international comparison by examining how different governments consider the emerging legal issues. Three. Copyright Ownership of Works Created by Artificial Intelligence   The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs issued in 2018[45] has expressed the Taiwan government’s stance on the issue of whether the outputs generated by artificial intelligence can enjoy copyrights. Below is the summary: Presumption: Article 10 and Article 33 of the Copyright Law[46] stipulates that only natural persons or legal persons can be the owner of rights and obligations pertaining to creative works and enjoy the protection of copyrights. Positioning and logics: The outputs generated by artificial intelligence are the intellectual results expressed by machines created by humans. Machines are neither natural persons or legal persons and hence do not attract copyrights. Proviso: If the results are created with participation of natural/legal persons and the machines are being operated for analytics, the copyright of the results expressed should belong to the natural/legal persons concerned.   The above explanatory ruling seems to position artificial intelligence completely as a tool. However, the above example suggests an obvious trajectory for the creative journey for deep learning as an artificial intelligence technique. In the current stage and the foreseeable future, the description that robot analytics are straight mechanical operations is completely obsolete given that artificial intelligence is being applied in industry with dramatically reduced (or even completely without) human intervention and participation.   It is a worthwhile exercise to explore the international thinking regarding how the legal framework should address the ownership of rights for outputs generated with deep learning as an artificial intelligence technique and the derived services/products by either opening up new legal structures or simply extending on the existing system. I. European Union (I) European Parliament: Establishment of Electronic Personhood?   The European Parliament's Committee on Legal Affairs (JURI) passed a report on January 12, 2018 to provide suggestions to the Civil Law Rules on Robotics and urge the European Commission to set up laws and regulations governing robots and artificial intelligence by defining electronic personhood, similar with legal personhood for corporates as litigation entities for any issues associated with rights and obligations of artificial intelligence[47]. (II) Court of Justice of the European Union: Only Works Accomplished by Humans Eligible for Protection   The Court of Justice of the European Union’s landmark case Infopaq International A/S v. Danske Dagbaldes Forening[48]suggests that copyrights are only applicable for original works, with originality reflecting the “author’s own intellectual creation.” The general interpretation is that such works should reflect the author’s personality. Hence, only human authors meet this criterion[49]. The third paragraph of Article 1 of the Directive 2009/24/EC also clearly states that only works that are the authors’ own intellectual creation enjoys eligibility for protection[50]. (III) Data Protection: GDPR and Declaration of cooperation on Artificial Intelligence   The General Data Protection Regulation (GDPR) in European Union attracted significant attention among the companies active in the EU market in 2018. In fact, the GDPR provides comprehensive and representative regulations that have direct influence on technological development of artificial intelligence training, as well as legal protection and right construction on data, the crude oil for deep learning.   Below are a few examples: Article 20 on data portability: The data subject has the right to receive his/her personal data from the data controller in a structured, commonly used and machine-readable format. This helps the industry to establish metadata and forms the basis of the database for artificial intelligence training. The consistency of metadata will enhance the training. Article 22 on automated individual decision-making The data subject has the right not to be subject to a decision based solely on automated processing. The data controller must lay down suitable measures to safeguard the data subject’s rights. Article 35 on data protection by design and by default This article provides the legal protection of large-scale and systematic monitoring of public and open areas with artificial intelligence and strikes a balance between the use of personal data and the interest of data subjects.   On top of the GDPR, the 24 member states of the European Union signed the Declaration of Cooperation on Artificial Intelligence in 2018, in order to enhance access to public sector data for the digital single market. II. United Kingdom (I) Copyright Law: Source of Laws for Program Developers to Obtain Copyrights   The copyright laws are stipulated in the Copyright, Designs and Patent Act (CDPA) 9 (3)[51]. It forms the source of the laws that grant copyrights to the developers of computer-generated works. Article 178 of the CDPA defines computer-generated works as the outputs generated by machines without human authors[52].   In contrast with the Court of Justice of the European Union’s decision that only human authors are eligible for copyright protection, the UK government opens up another door by specifying that program designers can obtain copyrights even if creative sparks come from machines[53]. This system is considered the most efficient because it enhances incentives for investments[54]. (II) Public Sector: Open up Government Data   The UK government also opens up its data by posting all the official statistics on the website www.data.gov.uk. The Digital Economy Bill provides the legal framework for government agencies to use each other’s data for the benefit of the public, so as to effectively address the issues surrounding frauds and debts and improve the real-timeliness and accuracy of national statistics.   As part of the Brexit preparation, the UK government has created its own GDPR (2018) to ensure the continued smooth cross-border operations of companies after Brexit. As it offers higher protection of consumers’ data and information, it is worthwhile to refer to the UK GDPR as a template for legal systems and rights frameworks. III. United States (I) U.S. Copyright Office: Only Intellectual Achievements of the Human Mind Eligible for Protection   The case law originated in 1991——Feist Publications v. Rural Telephone Service Company[55]confirms that copyrights protect the creative powers of the mind. In the Naruto v. Slater (2016)[56] case, the court determines that the photos taken by a monkey are not eligible for copyright protection. Article 313.2 of the implementation guidelines of the Copyright Act issued by the U.S. Copyright Office specify that the works created without human authors are not protected by the Copyright Act. The amendment to Article 313.2 in 2017 states clearly that the U.S. Copyright Act only protects the intellectual achievements of the human mind[57]. The U.S. Copyright Act 503.03(a), titled “Works-not originated by a human author” also states that only works created by a human author can register for copyrights[58]. (II) Employment Principle: Enhanced Incentives and Investment Willingness   The above court judgements and the implementation guidelines of the U.S. Copyright Act indicate that the U.S. Copyright Office does not confer non-human copyright[59]. However, the U.S. judicial rulings have allowed “the work made for hire provision” as exception to the creative authors, in order to encourage corporate investments. The 1909 amendment to the U.S. Copyright Act included the hired employees as authors. Unless otherwise agreed, “the author or proprietor of any work made the subject of copyright by this Act, or his executors, administrators, or assigns, shall have copyright for such work under the conditions and for the terms specified in this Act”. A typical example is the news agency’s employment of full-time journalists to produce editorials. The works by employees are a company’s key copyright assets[60]. (III)Employment/Sponsorship Principle if Realized in Taiwan: Companies Investing in Works to Obtain Copyright Protection   Article 11 of the R.O.C. Copyright Act stipulates the ownership of the right to the works of employees on a case-by-case and factual basis. The decision is based on the nature of work, e.g., completion under the employer’s instructions or planning, the use of the employer’s budgets or resources. It is not necessarily related to the work hours or locations. In principle, the employee is the author of the works completed by him/her on the job. However, the employment contract supersedes if it specifies that the employer is the author. On the other hand, if the employee is the author, the intellectual property belongs to the employer. The contract supersedes if it specifies that the employee enjoys the intellectual property. Article 12 is about sponsorship and commissioning. Unless specified by the contract, the sponsored owns the intellectual property of his/her works and the sponsor has the right to use such intellectual property[61]. In sum, the ownership of the right to the outputs generated by artificial intelligence is similar with the employment/sponsorship principle. It is not set in the vacuum of legal contexts.   Therefore, the scholar in Taiwan Lin Li-Chih suggests that the employment principle in the U.S. may be adopted. She posits that when certain conditions are met, artificial intelligence may be treated as the author, so that the outputs generated by artificial intelligence can be protected and the investing research institutes or corporates can own the works[62]. As both legal persons and natural persons can be authors in Taiwan, Lin Li-Chih proposes this approach to resolve disputes given the massive value to be created by artificial intelligence for different applications and the potential lengthy legislative process or laws disconnected from industry expectations. The idea is to avoid the human author requirement from hindering industry investments and innovations for works generated by artificial intelligence[63]. According to the employment/sponsorship principle, deep learning as an artificial intelligence method can be inferred to as the author and then teams and companies that develop the algorithms should own the intellectual property of the works. This will serve as the legal foundation for intellectual property protection. Four. Conclusion: Legal System and Policy Framework for Emerging Technologies I. Construction of Laws and Regulations on a Rolling Basis According to the Reality of Emerging Technologies   Every law has its purpose, and the contents of laws depend on their regulatory objectives. However, such contents should be anchored on facts, in order to align the intended purposes. This is particularly the case for the laws and regulations governing emerging technologies because such laws and regulations should capture the fact of technological developments. The most straightforward and fundamental approach to relax the control of the existing legal mechanism is via communication, coordination and understanding. It can be initiated with more dialogues between the government agency responsible for the construction of the legal environment and the industries and the public as subjects of the laws and regulations.   Regulators may wish to come up with dedicated laws for the comprehensive coverage of emerging technologies given the lack of understanding about the technology and the sweeping effects of the technology. However, not all technologies require special legislations. According to Frank H Easterbrook’s article “Cyberspace and the Law of the Horse” published by the University of Chicago’s legal journal, it is advised to properly categorize and analyze existing laws and regulations and apply the suitable ones to new technologies for issues surrounding intellectual property, contracts and torts, as if from the Law of the Horse to the Law of Cyberspace[64]. Similarly, the ownership of copyrights associated with artificial intelligence and the governance of emerging technologies such as autonomous driving and robots may be dealt in this way.   The above analysis on the legal regimes in the European Union, the United Kingdom and the United States highlights two issues concerning the regulation of artificial intelligence and the development of legal environments. The growing sophistication of deep learning will enhance the capability of artificial intelligence in thinking, analysis and creation, with human intervention expected to be reduced to almost zero. The legal regime governing emerging technologies cannot stand in the way of technological and industry development or incentives for investment, as originally intended by the intellectual property laws. A balancing act is required.   This paper thus suggests two models: Forward-looking approach to label rights ownership with legal articles This is the route taken by the UK government, by directly amending the intellectual property laws to specify that intellectual property of artificial intelligence belongs to program developers. It is the most efficient approach of paving the way for technological development by providing incentives to companies and developers. Adoption of the employment/sponsorship principle in conjunction with safe harbor clauses Another approach is without touching on the sensitive issue of law amendments. Judicial rulings or administrative interpretations by competent authorities are gradually released in the context of existing laws. A temporary solution is introduced with the adoption of the employment/sponsorship principle with corresponding templates and references for contract construction in the industry. This can work in conjunction with safe harbor clauses in the long run, by slowly converging the diversity of opinions and perspectives from corporates, government agencies and academic/research institutions. Adjustments by tightening or loosening on a rolling basis should be made in order to work out the optimal boundary and establish the basis for legislation in the next stage. II. Data as a Prerequisite for Artificial Intelligence Training   In Taiwan where the legal environment is not yet ready or clear, the ownership of intellectual property for outputs generated by artificial intelligence also involves the potential licensing royalties for the sourcing of training data.   It is worth noting that the use of data for artificial intelligence may affect the basic human rights due to discrimination or bias resultant from training data or algorithms. Therefore, it is necessary to enhance transparency and the protection of human rights conferred by the constitution with corresponding legal systems and ethical frameworks such as due process and fairness principle[65]. The other critical issue is the training database required for artificial intelligence applications. The government should provide more open data as a policy to support technology development in the corporate world or at research organizations. It is also necessary to make government information the structured metadata in order to enhance the efficiency and quality of research outputs. This is to facilitate added value by private sectors with data as an infrastructure provided by the government. Put differently, the government opens up structured data to empower the research and development of artificial intelligence; whilst the private sectors offer professional technology and development capabilities.   In terms of promoting data openness and applications, the government assumes greater accountability in the balancing between data use and data protection, the two equally important public interests. As an island of technology, Taiwan should look beyond the horizon of skies and oceans in the era where information and data flows without borders. The Taiwan government should establish the capability in data openness, protection and control by joining international forums. For instance, the government can apply with the APEC to join the Cross-Border Privacy Rules System in order to encourage regional collaborations in data control and construct datasets with the resources of the country. It is important to focus on the process of data collection, processing, analysis and utilization and ensure policies are implemented with the protection of civil and human rights such as the Right to Know, the Right to Withdraw and Citizen Data Empowerment. [1] David G. Lowe, Object Recognition from Local Scale-Invariant Features, Proceedings of the Seventh IEEE International Conference on Computer Vision, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=790410 (last visited Dec. 27, 2018) excerpt from “These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision”. [2] AI Lesson 101: Illustration of 27 Neural Network Models, Tech Orange, January 24, 2018, https://buzzorange.com/techorange/2018/01/24/neural-networks-compare/ (last visited on December 27, 2018) [3] Chen Yi-Ting (Bachelor’s Degree from Department of Physics, National Taiwan University, currently a PhD candidate in Department of Applied Physics, University of Stanford), Artificial Intelligence Starts with Neurons, May 3, 2018, https://case.ntu.edu.tw/blog/?p=30715 (last visited on December 27, 2018) [4] Hung-yi Lee’s personal profile at http://speech.ee.ntu.edu.tw/~tlkagk/. Currently teaching in Department of Electric Engineering, National Taiwan University; previously a guest scientist in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL); specialization in machine learning and deep learning [5] Chen Yan-Cheng, Who Is Likely to Lose Jobs in the Era of Artificial Intelligence? Experts Explains the Professional Skills in Demand for Deep Learning, December 26, 2018. https://www.managertoday.com.tw/articles/view/56859 (last visited on December 27, 2018) [6] Details available on JukeDeck’s official website at https://www.jukedeck.com/(last visited on January 11, 2019) [7] In addition to the leverage of two key features of artificial intelligence, JukeDeck is also very friendly to creative teams in need of musical materials in terms of royalties, fee structures, UI/UX design. The company offers free downloads to non-commercial users. An individual or a small group (of fewer than 10 people) can enjoy five free downloads each month and pay $6.99 per song for the sixth download and above. Large groups (of ten people or more) should pay $21.99 for each download. [8] DIGILOG Authors, “A Nightmare for Musicians? AI Online Music Composer System – JukeDeck, DIGILOG, June 2, 2016, https://digilog.tw/posts/668 (last visited on January 2, 2019) [9] Laird Studio, Let the Online Music Composer Jukedeck Produce Unique Background Music for Your Films or Games! March 8, 2016, https://www.laird.tw/2016/03/jukedeck-jukedeck-bgm.html (last visited on January 10, 2019) [10] As above. [11] Amper Music’s official website at https://www.ampermusic.com/(last visited on January 10, 2019) [12] GlobeNewswire, Amper Music Raises $4M to Fuel Growth of Artificial Intelligence Music Composition Technology, March 22, 2018, https://globenewswire.com/news-release/2018/03/22/1444796/0/zh-hant/Amper-Music%E7%B1%8C%E8%B3%87400%E8%90%AC%E7%BE%8E%E5%85%83%E4%BB%A5%E6%8E%A8%E5%8B%95%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%B7%A8%E6%9B%B2%E6%8A%80%E8%A1%93%E7%9A%84%E7%99%BC%E5%B1%95.html (last visited on January 10, 2019). This round was led by Horizons Ventures, with Two Sigma Ventures, Advancit Capital, Foundry Group and Kiwi Venture Partners. This brings the company's total investment to $9 million. [13] GlobeNewswire, same as above [14] Smart Piece of Wood, Free Online Composer Enabled by AI, Amper Music, March 1, 2017, Modern Musician,https://modernmusician.com/forums/index.php?threads/%E5%85%8D%E8%B2%BB%E7%B7%9A%E4%B8%8A%E5%B9%AB%E4%BD%A0%E4%BD%9C-%E7%B7%A8%E6%9B%B2%E7%9A%84%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%EF%BC%9Aamper-music.225650/ (last visited on January 10, 2019) [15] GlobeNewswire, same as Note 12 [16] Fang Yung-Chuan, Neohumanism, National Academy for Educational Research, http://terms.naer.edu.tw/detail/1312151/(last visited on January 10, 2019). Neohumanism emerged in Europe in the 18th and 19th century, against rationalism and utilitarianism advocated by the enlightenment movement. Neohumanism argues that the value of things is not hinged on practicality. Rather, it stems from the things themselves. Humanity is precious not because of rationality, but resultant from emotional satisfaction in life. Cultures are originated by the spontaneous activities of humanity, on the basis of emotions and imaginations. [17] Synopsis by books.com.tw, who sells online Xiaoice’s “Sunshine Misses Windows”, the first collection of poems generated by artificial intelligence in history, August 1, 2017, China Times Publishing Co. https://www.books.com.tw/products/0010759209 (last visited on January 13, 2019) [18] Wong Shu-Ting, AI Talents in Taiwan Find Stage in China: NTU Students Participate in R&D That Empowers Microsoft’s Xiaoice to Write Poetry by Looking at Pictures, BusinessNext, June 6, 2017, https://www.bnext.com.tw/article/44784/ai-xiaoice-microsoft(last visited on January 10, 2019 [19] Synopsis by books.com.tw, same as Note 17 [20] The organizer did not provide handouts from the speakers. The summary was based on the author’s note. [21]Lin Ke-Hung, “More Than Playing Chess. AI Writes Novels Too. AI Novel Passes Preliminary Screening for a Novel Award! Reading at Frontline, https://news.readmoo.com/2016/03/25/ai-fictions/(last visited on January 10, 2019) [22] Ou Tzu-Jin, “2,3,5,7,11..?AI-written Novel in Japan Nominated for a Literary Award, April 7, 2016, The News Lens , https://www.thenewslens.com/article/38783(last visited on January 10, 2019) [23] TechBang, AI Team in Japan Develops Robots That Write Short Stories and Participates in Literary Competitions, TechNews, March 28, 2016, http://technews.tw/2016/03/28/ai-robot-novel-creation/(last visited on January 10, 2019) [24] Ou Tzu-Jin, same as Note 20 [25] TechBang, same as Note 21 [26] Lin Ke-Hung, same as Note 19 [27] The title of the forum was “What is News Now?”. It attracted over 300 journalists and media experts from the U.S. and Asia Pacific to discuss media phenomena today. Detailed agenda available at East West Centre’s official website at https://www.eastwestcenter.org/events/2018-international-media-conference-in-singapore(last visited on January 10, 2019) [28] Jason Liu, “Robot Writer, Transformation of South China Morning Post, State Monitoring, International Media Conference Day 1, China, Medium, June 25, 2018, https://medium.com/@chihhsin.liu/%E5%AF%AB%E7%A8%BF%E6%A9%9F%E5%99%A8%E4%BA%BA-%E5%8D%97%E8%8F%AF%E6%97%A9%E5%A0%B1%E8%BD%89%E5%9E%8B-%E5%9C%8B%E5%AE%B6%E7%9B%A3%E6%8E%A7-%E5%9C%8B%E9%9A%9B%E5%AA%92%E9%AB%94%E6%9C%83%E8%AD%B0day1-%E4%B8%AD%E5%9C%8B-c9c20bd00d75(last visited on January 10, 2019) [29] Jason Liu, same as above [30] Jason Liu, same as above [31] First Time Ever in the World!AI-Created Portrait, Sold at Christie's Auction for NT$13.34 Million, Liberty Times, October 26, 2018, http://news.ltn.com.tw/news/world/breakingnews/2592633(last visited on January 10, 2019) [32] The selling price is 40x higher than the expected price. The buyer’s identity is unknown. Chang Cheng-Yu, “First Time Ever! AI-Created Portrait Auctioned at Christie’s for NT$13.34 Million, October 26, 2018, LimitlessIQ,https://www.limitlessiq.com/news/post/view/id/7241/ (last visited on January 10, 2019) [33] Lin Pei-Yin, Does the NT$10m Worth AI Portrait Have Intellectual Property?” Apple Daily, Real-Time Forum, November 29, 2018, https://tw.appledaily.com/new/realtime/20181129/1475302/(last visited on January 10, 2019) [34] Jamie Beckett, What Are Generative and Discriminant Networks? Hear What Top Researchers Say, Nvidia, May 17, 2017, https://blogs.nvidia.com.tw/2017/05/generative-adversarial-network/(last visited on January 10, 2019) [35] Jamie Beckett, same as above. Ian Goodfellow is currently a Google research scientist. He was a PhD candidate in the Université de Montréal when he came up with the idea of generative adversarial networks (GAN). [36] Jamie Beckett, same as above [37] Jamie Beckett, same as above [38] Chang Cheng-Yu, same as Note 32 [39] Jamie Beckett, same as Note 34 [40] Video for the speech: GTC 2017: Big Bang of Modern AI (NVIDIA keynote part 4), link at https://www.youtube.com/watch?v=xQVWEmCvzoQ (last visited on January 10, 2019) [41] Wu Chia-Zhen, AI-Generated Nude Portrait Beats Real People’s Works by Claiming the UK Art Award and Prize of NT$120,000, LimitlessIQ, October 15, 2018 https://www.limitlessiq.com/news/post/view/id/7070/(last visited on January 10, 2019) [42] Jamie Beckett, same as Note 34 [43] Chang Cheng-Yu, same as Note 32 [44] Chang Cheng-Yu, same as Note 32 [45] The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs, Email 1070420, issued on April 20, 2018, https://www.tipo.gov.tw/ct.asp?ctNode=7448&mp=1&xItem=666643(last visited on January 2, 2019). The discussion was in response to the training outcome of voice recognition patterns based on analytics of the 1999 Citizen Hotline voice data. [46] According to Article 10 of the Copyright Law, authors enjoy copyright at the time of the work completion. Article 33 stipulates that copyright for legal-person authors lasts 50 years after the first publication of the work concerned. [47] Yeh Yun-Ching, Birth of New Type of Legal Right/Liability Entity ─ Possibility of Robots Owning Copyrights According to 2017 Proposal from European Parliament, IP Observer - Patent & Trademark News from NAIP Issue No. 190, July 26, 2017 http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Laws/IPNC_170726_0201.htm (last visited on January 2, 2019) [48] C-5/08 Infopaq International A/S v. Danske Dagbaldes Forening. [49] Andres Guadamuz, Artificial Intelligence and Copyright, WIPO MAGAZING, October 2017, https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html (last visited on January 19, 2019). [50] The article indicates that “A work should be protected in “the sense that is the authors’ own intellectual creation. No other criteria shall be applied to determine its eligibility for protection”. [51] Excerpt from the original legal article: in case of a literary, dramatic, musical or artistic work which is computer-generated, the author shall be taken to be the person by whom the arrangements necessary for the creation of the work are undertaken. [52] Excerpt from the original legal article: generated by computer in circumstances such that there is no human author of the work. [53] Andres Guadamuz, supra note 49. [54] Id. [55] Feist Publications v. Rural Telephone Service Company, Inc., 499 U.S. 340 (1991). “the fruits of intellectual labor that are founded in the creative powers of the mind.” [56] Naruto v. Slater, 2016 U.S. Dist. (N.D. Cal. Jan. 28, 2016). [57] The 2014 version of Article 313.2 provides a list of the examples not eligible for the U.S. Copyright Act protection. These include the works generated by the nature, animals or plants and the works purely generated by machines or machinery at random, without any creative inputs or intervention from humans. The examples given are photos taken by a monkey and murals painted by an elephant. The 2014 version establishes that works not created by humans are not eligible for copyright protection. The 2017 version takes a step further with more specific and straightforward wording. [58] Copyright Act 503.03(a): Works-not originated by a human author. In order to be entitled to copyright registration, a work must be the product of human authorship. Works produced by mechanical processes or random selection without any contribution by a human author are not registrable. Thus, a linoleum floor covering featuring a multicolored pebble design which was produced by a mechanical process in unrepeatable, random patterns, is not registrable. Similarly, a work owing its form to the forces of nature and lacking human authorship is not registrable; thus, for example, a piece of driftwood even if polished and mounted is not registrable. [59] Andres Guadamuz, supra note 49. [60] Lin Li-Chih, An Initial Examination of Copyright Disputes Concerning Artificial Intelligence —— Centered on the Author’s Identity, Intellectual Property Rights Journal, Volume 237, September 2019, pages 65-66 [61] The legislative rationale for Article 12 of the R.O.C. Copyright Act: The sponsor and the sponsored are typically in a more equal position for the works completed with sponsorship. It is different from the situation where the works are completed by an employee by using the hardware and software offered by the employer and receiving salaries from the employer. Therefore, the ownership of copyrights depends on the contract between the sponsor and the sponsored regarding the investment and sponsorship purposes. Unless otherwise specified by the contract, the sponsor typically provides funding because of his/her intention to use the works completed by the sponsored. Therefore, the intellectual property should belong to the sponsored. [62] Lin Li-Chih, same as Note 60, pages 75-76. Further reference of the principle used in the U.S. system: Annemarie Bridy (2016), The Evolution of Authorship: Work Made by Code, Columbia Journal of Law, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2836568. Also the same author (2012), Coding Creativity: Copyright and the Artificially Intelligent Author, Stanford Technology Law Review, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1888622. [63] Lin Li-Chih, same as Note 60, page 76 [64] Frank H Easterbrook, Cyberspace and the Law of the Horse, 1996 U. CHI. LEGAL F. 207. [65] Please refer to State v. Loomis, 317 Wis. 2d 235 (2016).

The Development of Non-Drama TV Programs in Taiwan and the Protection of Intellectual Property Rights

The Development of Non-Drama TV Programs in Taiwan and the Protection of Intellectual Property Rights   With the advancement of an era of digital content, the industrial structure of the audio-visual content industry has gradually changed. The production and sales channels of audio-visual content have appeared to trend toward diversification. Emerging content channels or new media have replaced traditional TV stations. The transmission speed of digitized content is faster than the traditional media, which has become an output opportunity for the content of Taiwan in the international market. In the field of drama programs, there have been cases of successful global output, and international cooperation and export models have been gradually discovered. By contrast, non-drama TV programs of Taiwan still remain in the traditional production mode in lack of creation of new content or funds, as well as talents for production and international marketing, which leads to a vicious circle of industrial stagnation or even regression. 1. Problems with domestic non-drama TV programs   Funding is the first issue that needs to be resolved. "Due to the lack of money, the only thing that can be done is producing programs that no one wants to watch." Such a condition exists day after day that causes the entire non-drama programs to be depressed, and few people are willing to invest. By contrast, in China or South Korea, the linkage of its variety shows brings about the development of the content industry, and the benefits are amazing. The willingness to spend money on the investment at its initial stage is an essential element of success. However, if there is no successful case, it may not be easy to solely rely on Taiwanese private funds.   As far as the technical level of TV program production is concerned, it is particularly important to modelize TV programs if they are to be exported. The market transaction of international TV program formats has existed for many years, but the object of the transaction is the core content and production process of TV programs, that is, the TV program bible. For non-drama TV programs of our country, if it needs to sum up the core of the program in one sentence, it is not impossible to achieve. However, it still lacks the core content such as the famous tv show "THE Voice" that is sufficient to attract people. In addition, in terms of production, how to edit as well as integrate the stage and supporting design into the shooting so to present attractive programs is the relatively lacking part in TV programs of our country.   As for the cultivation of talents, Taiwan has yet rarely relevant talents who are able to research, develop, and independently write the TV program bible, as well as do marketing. By contrast, China has achieved remarkable results in TV programs in recent years. They have some consultant companies that specialize in writing a TV program bible for production companies. Their R&D personnel record details by following and observing the directors, producers, and photographers, of which the records gradually become a TV program bible. Some talents in China have mastered the art of writing TV program formats. They can even directly disassemble well-known foreign formats and rewrite them as Chinese versions for production, which has achieved success. 2. Overview of international TV program formats   Taking a broad view of the status of foreign TV program formats, it is found that the output of creative development is not in the countries with big entertainment industries such as the United States, the United Kingdom, and France, but in small European countries such as the Netherlands and Israel, which have a large number of output of TV program formats. The Netherlands and Israel are not countries where the television industry is prosperous. However, their TV program output occupies an important position in the global market. Some programs have even produced more than 1,000 episodes in the world, with the output to countries including the United States, China and others. Similar to Taiwan, Netherlandish and Israeli TV programs are also faced with great limitations in production funds due to the small domestic market. However, many TV programs have been created by relying on the novel program content and taking full account of the needs of the international market.   In the international trade market of TV program formats, if you intend to successfully output a program, it not only contains a novel main idea, but also covers production and viewing. The output carrier of TV program formats is the "TV Format Bible". Its content includes various links of program rundown, personnel settings, camera lenses, sound effects and lighting, etc. As long as the program has a fixed existing model, no matter who plays the roles in the program, the quality of the program can be kept stable. This kind of production of non-drama TV programs according to the TV Format Bible is called TV Format. 3. Protection of huge business opportunities of formats: preservation and authorization management of intellectual property rights   The core value of formats often lies in the creative part of the content. How to effectively preserve the creativity and at the same time to claim the rights are of the most concern by ideators, and the carrier of modelizing creation is the "TV Format Bible".   The writing of the "TV Format Bible" is based on the thinking of TV Format structure. At the creative stage, the core content will be integrated into the production level, including how to set up the lighting and the arrangement of the camera to achieve the entertainment effect of the creative core content and other details. However, the value of the "TV Format Bible" comes from the ideation of ​​creativity, and whether creativity is to be protected by law has been controversial since always. Judging from the results of the current judgments on disputed cases concerning the TV Format, the more specific the TV Program Bible is written, the higher chance it has to be protected.   A successful variety show not only can bring about the domestic and foreign income from the show itself, but associated derivatives such as music, tourism, and peripheral products may also be able to obtain huge business opportunities due to the broadcast of the program. Therefore, although the TV Program Format is centered on its content, it actually involves issues of industrial management such as human resources, labor relations, corporate governance, taxation, fundraising, bankruptcy procedures, economic systems, and professional ethics. In addition, in aspects of commerce, marketing and management aspects, matters such as the establishment of the production team, the production process management, the acquisition and use of creation funds, and valuation are all covered in the operation of formats.

A Survey Study on the Intellectual Property Management amongst Taiwanese Companies

J. Kitty Huang Chien-Shan Chiu Background In order to provide insight into intellectual property (IP) awareness, the status quo as well as potential hardship and demands arise over IP management, STLC was commissioned by IDB (Industrial Development Bureau) to conduct a survey study in June 2010. In this article, we provide briefings on the contents, research methodology and major findings of this study. About the research The survey questionnaire was sent by means of emails or posts to a total of 1000 business establishments randomly generated from the registration data facilitated by the Ministry of Economic Affairs. This was also the first time that such a survey has been envisaged on such a comprehensive scale, covering businesses located around Taiwan with the aim being to produce an in-depth analysis into IP management in various industries including manufacturing, precision machineries, photonics, bio-medicals, info-techs, semiconductors etc. Sixty-five percent of the respondents have less than fifty employees and the overall response rate achieved was 13.1%.1 A continuing need to strengthen IP awareness is required The first section of the questionnaire dealing with IP awareness gauged respondent companies IP knowledge and understanding through a series of questions relating to IP law and practice. When asked whether formal registration was necessary to obtain a range of intellectual property rights (IPRs), over 70% of companies replied with correct answers, namely patents, designs and trademarks. However, through other questions at a more advanced level, the responses revealed a general lack of knowledge in IP law and hence a continuing need to strengthen IP awareness is required. For instance, overall 70% of companies know that obtaining patents will require formal registration, yet surprisingly even of these over 50% incorrectly thought the manners of patent utilization, such as making products, will not result in infringing others IPRs. This result arguably suggests that respondents are in the main unaware that a patent does not give the patent owner the right to exploit the patented invention himself, but rather, he has only the “exclusive right” to stop others from doing so. For another instance, whilst 32% of respondents inaccurately thought that a formal registration is required to obtain copyrights, nonetheless this does not equate to the result being a near 70% of companies have a full and correct knowledge in regard to copyright. When faced with a slightly more obscure question of who would own the copyright in commissioned work (such as website creation) in the absence of a contract, 26% of companies didn’t know and 30% answered incorrectly. On the same token, though only 10% of respondents erroneously believed that trade secrets would require a formal registration, when asked whether the company’s client list may be a trade secret, the number of correct replies (61%) drops sharply when compared to the previous one. Though intended as a question to discriminate at the upper levels of trade secret awareness, the replies are more likely to reflect a lack comprehension of the subject among Taiwanese companies. The important message arise from the overall scales in the first section of the survey is that the need for IP awareness promotion and enhancement amongst companies in Taiwan still exists. Lack of IP expertise is a major barrier In the second section of the questionnaire companies were asked a series of questions which were intended to measure the status quo through the extent of IP management practices. Perhaps one would agree that the issue of perceptions of the importance of IP to a company is greatly linked to how effective it manages them. When asked to indicate reasons as to why IP is important to their business, the replies were rather polarized. The two most popular reasons were “means to differentiate from competitors” (33%) and “to prevent infringement” (30%). The distinction between the two is clearly that the former reason is relatively active and strategic whilst the latter is perceived to be passive and defensive. On the other hand, “to retrieve the cost of R&D” (4%) and “to attract more investors” (5%) are least likely to be seen as the reasons why IP is important to them. The results may suggest that generally speaking, Taiwanese companies tended not to utilize their IP to generate revenues nor correlate them with the business strategies, but rather, see them more of a shield to avoid infringement. Companies were asked what IPRs they own and the most common ones are trademarks (21%) and utility patents (20%), with invention patents (14%) being the third on the rank. In contrast only 2% of respondent companies own copyrights. While such result may be attributed to the overall structure of the industry, it may also link to the observation that most companies not merely lack the comprehension of copyrights but may also not be aware of owning such IPR. Furthermore, it is also surprising to find that 45% of respondents do not own any IPRs. The absence of IPRs within these companies is perhaps a key indication of poor awareness and inactive management of IPRs amongst many Taiwanese companies. To measure the extent of IP management is not easy as the intensity of it differs both by sector and by size. Therefore, the task is achieved through 9 questions designed on the concept of PDCA (plan-do-check-act) process which would allow the respondents to review and find out any inadequacy in their IP management as they proceed. One would expect that those companies with effective IP management would take care to evaluate the various IPRs required at different time intervals. Whilst all of the answer choices are considered to be “important timings”, for example “when planning for new skills/products/business” and “when further investment in IP would enhance defense (such as infringement prevention); yet the results revealed that over 60% of the companies did not perform such evaluation at whatever timing. This may suggest that in general, companies in Taiwan are inadequately concerned with the evaluation process within their management of IP. Such a result may consequently make them ignoring means to prevent infringement (such as checking competitors’ IPRs and prior-art search) or pay attention to regulation updates. Effective IP management indisputably requires certain monetary inputs. Companies were asked whether they have regularly spent on obtaining and maintaining IPRs the firm owns, and remarkably only about 36% of respondents answered this question. In addition the companies were asked about how much they spent on “application fees”2,“incentives offered to inventors”, “spending on HR” and “other expense”. Only a paltry 6% of all respondent companies spent on all the abovementioned categories and mostly up to the amount of NT$100,000 (roughly USD$3300) per each. Linked with the spending on IPRs is perhaps whether companies have designated staff responsible for managing IPRs or have a separate IP department. Again, 70% of respondents replied negatively to this question and only 10% of some larger companies (with over 200 employees) have specific personnel or department designated to assume this responsibility. The results may indicate a general lack of expertise in managing IPRs as a barrier to leveraging full value of them as well as making proper legal decision in the event of IP related disputes Companies were asked how to protect their IPRs through a variety of methods of protection though the majority (over 72%) didn’t implement any of them. The most highly identified method being “protect core skills by patents”, however, only 35% of companies adopted such protection. Furthermore, roughly 76% of the companies did not conduct training in IP issues for employees, and over 75% did not attempt to assess the efficiency of their management of IP. The explanation to the above is conceivably a general lack of IP expertise due to inadequate monetary inputs as well as perceived high costs for IP specialists within the company. The results ultimately reflect an inefficient execution of IP management in the massive Taiwanese companies. Most companies have only limited resources The final aspect of IP management that has been surveyed is the hardships occurred and accordingly the resources sought to solve them. When asked what are the major difficulties in the process of managing IP, the most common answers were “high expenditure on filing and maintenance” (18%), “lack of professional advice” (15%) and “regulatory complexity” (15%). These results are arguably all related to the facts already discussed in the afore-mentioned paragraphs. In general, the survey revealed that most companies have only limited resources and therefore highly demand external aids such as government funding or projects to help soften the hardships and improve their management skills. Accordingly, “unifying resources for enhancing IP management through a mutual platform” (22%) and “facilitate industry peer networks” (21%) being the most popular resources sought. Furthermore, 14% of the respondents indicated their urge to receive “on-site expert assistance”, and a remarkable 90% of the respondents have never been aware of the TIPS (Taiwan Intellectual Property Management System) project, which is one initiated by the government to help companies set up a systematic IP management system. As a result, efforts to promote the TIPS project should be further devoted as the initial step to assist companies strengthen their IP awareness and management skills. Conclusion The results of the survey present the status quo of IP management amongst the companies in Taiwan which is proportionally consistent with their IP awareness as well as hardships and resources sought. The present study shows what one might expect, that is larger companies tend to be more IP aware and have greater resources to manage their IPRs, whilst the rest of others (especially SMEs) are in the main inadequately aware of IP, which is crucial to enhance active IP management within and throughout their firms. While various resources are highly demanded, perhaps the government should firstly take steps to promote that awareness within and throughout their organizations. Linked with this is the second important point which is that further promotion of the TIPS project should be aimed at not only enhancing IP awareness but also assisting companies to better manage their IPRs. IP management is essential to preserve IP created by companies and the TIPS system would enable companies to foster and strengthen key aspects of IP management such as conduct training in IP issues for employees, evaluate various IPRs required, etc. Some of the complementary measures as such expert consultations and TIPS networks or seminars would also help to alleviate some of the hardships encountered in the process of managing IP. On the other hand, like the “Survey on Business Attitudes to Intellectual Property” being conducted yearly in Hong Kong since year 2004, it is suggested that the present survey research or the alike to be continually carried out to assist promoting IP awareness within Taiwan industry. Finally, we would like to thank everyone who contributed to this survey research and hope that it provides valuable insight into the goals originally proposed. 1.The survey resulted in 157 replies from which 26 of them were nullified by false or incomplete answers. 2.Application fees” include fees occurred from exploring inventions up to application and maintenance, which also include attorney fees.

TOP