Artificial Intelligence Governance - Taking Deep Fake as an Example

Artificial Intelligence Governance - Taking Deep Fake as an Example

 

1.Introduction

  With the increasing maturity of the use of neural networks, the application of artificial intelligence technologies is becoming more and more widely used. Among them, through the automated editor and convolutional neural network technology, the threshold of the technology of copying films is not very high. In November 2017, some films that superimpose the faces of social celebrities on pornographic film actors/actresses appeared in the American social networking platform, Reddit. These types of films analyze the faces of specific socialites through deep learning algorithms and superimpose their faces on the films, making them look as if the films were taken by the socialites themselves. This technology was released by developers in 2018 and was made into an app for public use. At present, such technology is generally referred to as "deep fake" internationally, and it is believed that it may contribute to the speedy invention and distribution of false information existing throughout the Internet nowadays, which has attracted the attention of legislators worldwide. As it uses fake images or films automatically generated by Deep-learning technology, it involves both dimensions of fake information prevention and artificial intelligence governance. The purpose of this paper is to observe the relevant policies, legal measures and related guidelines or principles of the international community in response to issues of deep fake and artificial intelligence governance, and to examine whether the current legal system in Taiwan can cope with the impact of deep fake so as to provide feasible recommendations.

 

2.Ethics Rules for Artificial Intelligence

  In the governance of artificial intelligence, the European Union introduced the “Ethics Guidelines for Trustworthy AI” on April 8, 2019 to establish a framework for supervising artificial intelligence in order to make artificial intelligence trustable.

  The guidelines first points out that Trustworthy AI requires three key characteristics: (1) it should be lawful: complying with all applicable laws and regulations; (2) it should be ethical: ensuring adherence to ethical principles and values; and (3) it should be robust: both from a technical and social perspective, to avoid AI from inadvertently causing harm.

  Fundamental Rights are the basis of trustworthy AI. In order to comply with the above-mentioned basic human rights and to make AI reliable, their expert group believes that AI should abide by four ethical principles, including: (1) respect for human autonomy; (2) prevention of harm; (3) fairness; and (4) explicability. The four ethical principles are also transformed into the seven specific measures: “human agency and oversight”, “technical robustness and safety”, “privacy and data governance”, “transparency”, “diversity, non-discrimination and fairness”, “societal and environmental wellbeing impact evaluation” and “AI accountability”. To facilitate the true implementation of self-assessment for application developers, the Guidelines devise the Trustworthy AI Assessment List in Chapter 4 for the reference of the enterprise.

 

3.Counter measures Against the International false messages

  In response to the prevention of false messages, the two parties in the United States also jointly proposed in 2018 the Malicious Deep Fake Prohibition Act of 2018 to amend the relevant provisions of fraud in the criminal law. This bill amends Chapter 47 of the United States Code by adding Section 1041 with regard to fraud in connection with audiovisual records. It treats the use of deep fake as a criminal offence and defines deep fake as “audiovisual record created or altered in a manner that the record would falsely appear to a reasonable observer to be an authentic record of the actual speech or conduct of an individual”. It shall be unlawful to, using any means or facility of interstate or foreign commerce, to create, with the intent to distribute, a deep fake with the intent that the distribution of the deep fake would facilitate criminal or tortious conduct; or distribute an audiovisual record with actual knowledge that the audiovisual record is a deep fake, and the intent that the distribution of the audiovisual record would facilitate criminal or tortious conduct. Any person who violates the above may be sentenced to imprisonment for more than 2 years but less than 10 years. However, the bill is currently put on hold without being further reviewed.

  In addition, in order to properly cope with the danger of deep fake, on June 28, 2019, the two parties in the US Congress jointly proposed the bill - "To require the Secretary of Homeland Security to publish an annual report on the use of deep fake technology, and for other purposes”, which may be cited as the "Deepfakes Report Act of 2019". This bill requires the Department of Homeland Security to conduct research on deep fake and related issues, produce an annual report, and to request it to assess the direction of addition or revision of relevant laws and regulations. Moreover, the US senators from both parties also proposed on June 12, 2019 the bill- “Defending Each and Every Person from False Appearances by Keeping Exploitation Subject to Accountability Act of 2019”, which may be cited as “DEEP FAKES Accountability Act”. This Act is the same as the Act of 2018, both of which treat the use of deep fake as a fraudulent act by adding section 1041 to Chapter 47 of the United States Code. However, this Act does not directly define deep fake, but rather define such a type of technology as “advanced technological false personation record”, and require such records to comply with:

(1) DIGITAL WATERMARK: Any advanced technological false personation record which contains a moving visual element shall contain an embedded digital watermark clearly identifying such record as containing altered audio or visual elements.

(2) AUDIOVISUAL DISCLOSURE shall comply with the following principles:

A. clearly articulated verbal statement that identifies the record as containing altered audio and visual elements, and a concise description of the extent of such alteration; and
B. an unobscured written statement in clearly readable text appearing at the bottom of the image throughout the duration of the visual element that identifies the record as containing altered audio and visual elements, and a concise description of the extent of such alteration.

(3) VISUAL DISCLOSURE shall comply with the following principles: Any advanced technological false personation records exclusively containing a visual element shall include an unobscured written statement in clearly readable text appearing at the bottom of the image throughout the duration of the visual element that identifies the record as containing altered visual elements, and a concise description of the extent of such alteration.

(4) AUDIO DISCLOSURE shall comply with the following principles: Any advanced technological false personation records exclusively containing an audio element shall include, at the beginning of such record, a clearly articulated verbal statement that identifies the record as containing altered audio elements and a concise description of the extent of such alteration, and in the event such record exceeds two minutes in length, not less than 1 additional clearly articulated verbal statement and additional concise description at some interval during each two-minute period thereafter.

  According to the bill, those who violate the above requirements shall be subject to legal responsibilities. In criminal liabilities, whoever knowingly violates the above requirements and (1) with the intent to humiliate or otherwise harass the person falsely exhibited, provided the advanced technological false personation record contains sexual content of a visual nature and appears to feature such person engaging in such sexual acts or in a state of nudity; (2) with the intent to cause violence or physical harm, incite armed or diplomatic conflict, or interfere in an official proceeding, including an election, provided the advanced technological false personation record did in fact pose a credible threat of instigating or advancing such; (3) in the course of criminal conduct related to fraud, including securities fraud and wire fraud, false personation, or identity theft; or (4) by a foreign power, or an agent thereof, with the intent of influencing a domestic public policy debate, interfering in a Federal, State, local, or territorial election, or engaging in other acts which such power may not lawfully undertake, may be sentenced to imprisonment for not more than 5 years.  In civil liabilities, any person who violates the above requirements may be subject to a civil penalty of up to US$150,000 per record or alteration, as well as the compensation for the damage, if any.

  In addition to the United States, the United Kingdom also launched the "Online Harms White Paper" in April 2019, which will establish a new "Online Safety" control structure to respond to false messages and underage pornographic videos, deep fake and online drug trafficking and so on.

  The report points out that the new network security control framework will clarify the legal obligations of the Internet company to make the company assume more security responsibilities and avoid the harm caused by the content or actions generated by the service provided, and establish an independent regulatory agency supervising and implementing the relevant legal policies. The regulatory authority should provide relevant guidelines for compliance with the new obligations. If the company is unwilling to comply with the relevant guidelines, it must bear the burden of proof and prove that its alternative measures can achieve more effectively for the purpose of protecting the Internet users. In addition, the framework will also include elements of “Transparency, Trust, and Accountability”. The competent authority will be given the right to request an annual transparency report be submitted by the company, which the report should indicate the relevant harmful contents appeared on its platform, explain how it is handling with the problem, and publish the report on the website. Furthermore, the competent authority will have the right to request additional information from the Internet company, such as how its algorithm works.

  In response to false messages, the report points out that current Internet companies have begun to conduct research on the prevention and control methods of fake news dissemination, including: (1) through the terms of service, users are not allowed to distort their identity on social software to spread false messages. (2) developing relevant tools to detect suspicious, false or junk accounts; (3) using automated artificial intelligence to delete or remove fake accounts; and (4) collaborating with independent fact verifying platforms. However, in the future, the government hopes that the guidelines and related policies proposed by the competent authorities must further include the following matters: (1) The company shall clarify its definition of false information in its terms of service, and state its expectations of users, and the possible penalties to users who violate the company policy; (2) The company should adopt the relevant countermeasures to deal with users with distorted identities who disseminate false messages; (3) The visibility of the disputed content currently under the fact-verifying inspection shall be reduced; (4) The fact-verifying service shall be used, especially during the election period, for fulfilling the obligation of fact verification; (5) Promote authoritative news sources; (6) Promote news circulation from different perspectives, rather than only reinforce the messages of people's existing views; (7) Users should be able to recognize that they are interacting with automated accounts and should ensure that the dissemination of automated accounts information is not abused; (8) Promote the transparency of political advertising to comply with the norms of the UK electoral law; (9) Companies should ensure that users may mark the content that they believe to be false news by themselves and let them know that the company is targeting false news for countermeasures to be taken; (10) The procedures for publishing information should be open and transparent so that the public can assess the effectiveness of the company’s response to false information, and further support the relevant research on online false message activities; (11) The relevant procedures and measures should be taken to continuously monitor and evaluate the effectiveness of the processing flow of fake messages.

  From the above-mentioned relevant international legal policy observations, it can be found that international measures related to deep fake can be classified into the following items:

(1) Establish an independent fact-verifying unit.
(2) Improve the transparency of information sources.
(3) Improve the oversight responsibility of the online platform for the messages appeared on such a platform.
(4) Deep fake is to be treated as an independent criminal act and its criminal, civil and administrative responsibilities are to be clearly regulated.
(5) On the technical level, relevant artificial intelligence tools are being developed to respond to this issue. For example, the American startup company, Deeptrace, has begun to conduct research and develop deep fake identification technology to identify the authenticity of the films.

※Artificial Intelligence Governance - Taking Deep Fake as an Example ,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=169&d=8313 (Date:2020/10/25)
Quote this paper
You may be interested
The Coverage and Policies of Critical Infrastructure Protection in U.S.

Regarding the issue of critical infrastructure protection, the emphasis in the past was put on strategic facilities related to the national economy and social security merely based on the concept of national defense and security1. However, since 911 tragedy in New York, terrorist attacks in Madrid in 2004 and several other martial impacts in London in 2005, critical infrastructure protection has become an important issue in the security policy for every nation. With the broad definition, not only confined to national strategies against immediate dangers or to execution of criminal prevention procedure, the concept of "critical infrastructure" should also include facilities that are able to invalidate or incapacitate the progress of information & communication technology. In other words, it is elevated to strengthen measures of security prevention instead. Accordingly, countries around the world have gradually cultivated a notion that critical infrastructure protection is different from prevention against natural calamities and from disaster relief, and includes critical information infrastructure (CII) maintained so that should be implemented by means of information & communication technology into the norm. In what follows, the International CIIP Handbook 2008/2009 is used as a research basis. The Subjects, including the coverage of CIIP, relevant policies promoted in America, are explored in order to provide our nation with some references to strengthen the security development of digital age. 1. Coverage of Important Critical Information Infrastructures Critical infrastructure is mainly defined in "Uniting and Strengthening our country by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act of 2001, as known as Patriot Act of the U.S., in section 1016(e)2 . The term ‘critical infrastructure’ refers to "systems and assets, whether physical or virtual, so vital to our country that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matters." In December 2003, the Department of Homeland Security (DHS) promulgated Homeland Security Presidential Directive 7 (HSPD-7)3 to identify 17 Critical Infrastructures and key resources (CI/KR) ,and bleuprinted the responsibility as well as the role for each of CI/KR in the protection task. In this directive, DHS also emphasized that the coverage of CI/KR would depend on the real situations to add or delete sectors to ensure the comprehensiveness of critical infrastructure. In March 2008, DHS added Critical Manufacturing which becomes the 18th critical infrastructure correspondent with 17 other critical infrastructures. The critical infrastructures identified by DHS are: information technology, communications, chemical, commercial facilities, dams, nuclear reactors, materials and waste, government facilities, transportation systems, emergency services, postal and shipping, agriculture and food, healthcare and public health, water, energy (including natural gas, petroleum, and electricity), banking and finance, national monuments and icons, defense industrial Base, and critical manufacturing. 2. Relevant Policies Previously Promoted With Critical Infrastructure Working Group (CIWG) as a basis, the President's Commission on Critical Infrastructure Protection (PCCIP) directly subordinate to the President was established in 1996. It consists of relevant governmental organizations and representatives from private sectors. It is responsible for promoting and drawing up national policies indicating an important critical infrastructure, including natural disasters, negligence and lapses caused by humans, hacker invasion, industrial espionage, criminal organizations, terror campaign, and information & communication war and so on. Although PCCIP no longer exists and its functions were also redefined by HDSP-7, the success of improving cooperation and communication between public and private sectors was viewed as a significant step in the subsequent issues on information security of critical infrastructure of public and private sectors in America. In May 1998, Bill Clinton, the former President of the U.S., amended PCCIP and announced Presidential Decision Directive 62, 63 (PDD-62, PDD-63). Based on these directives, relevant teams were established within the federal government to develop and push the critical infrastructure plans to protect the operations of the government, assist communications between the government and the private sectors, and further develop the plans to secure national critical infrastructure. In addition, concrete policies and plans regarding information security of critical infrastructure would contain the Defence of America's Cyberspace -- National Plan for Information Systems Protection given by President Clinton in January, 2000 based on the issue of critical infrastructure security on the Internet which strengthens the sharing mechanism of internet information security messages between the government and private organizations. After 911, President Bush issued Executive Order 13228 (EO 13228) and Executive Order 13231 to set up organizations to deal with matters regarding critical infrastructure protection. According to EO 13228, the Office of Homeland Security and the Homeland Security Council were established. The duty of the former is mainly assist the U.S. President to integrate all kinds of enforcements related to the protection of the nation and critical infrastructure so as to avoid terrorist attacks, while the latter provides the President with advice on protection of homeland security and assists to solve relevant problems. According to EO 13228, the President's Critical Infrastructure Protection Board directly subordinate to the President was established to be responsible for offering advice on polices regarding information security protection of critical infrastructure and on cooperation plans. In addition, National Infrastructure Advisory Council (NIAC), which consists of owners and managers of national critical infrastructure, was also set up to help promote the cooperation between public and private sectors. Ever since the aforementioned executive order, critical infrastructure protection has been more concrete and specific in definition; for instance, to define critical infrastructure and its coverage through HSPD-7, the National Strategy for Homeland Security issued in 2002, the polices regarding the National Strategy to Secure Cyberspace and the National Strategy for Physical Protection of Critical Infrastructure and Key Assets addressed by the White House in 2003; all of this are based on the National Strategy for Homeland Security. Moreover, the density of critical infrastructure protection which contains virtual internet information security was enhanced for the protection of physical equipment and the protection from destruction caused by humans. Finally, judging from the National Infrastructure Protection Plan (NIPP), Sector-Specific Plans (SPP) supplementing NIPP and offering a detailed list of risk management framework, along with National Strategy for Information-Sharing, the public-private partnership (PPP) and the establishment of information sharing mechanism are highly estimated to ensure that the network of information security protection of critical infrastructure can be delicately interwoven together because plenty of important critical infrastructures in the U.S. still depend on the maintenance and operation of private sectors. 1.Cf. Luiijf, Eric A. M. , Helen H. Burger, and Marieke H. A. Klaver, “Critical Infrastructure Protection in the Netherlands:A Quick-scan”. In:Gattiker, Urs E. , Pia Pedersen, amd Karsten Petersen (eds. ) . EICAR Conference Best Paper Proceedings 2003, http://cip.gmu.edu/archive/2_NetherlandsCIdefpaper_2003.pdf (last accessed at 20. 07. 2009) 2.For each chapter of relevant legal cases, please visit http://academic.udayton.edu/health/syllabi/Bioterrorism/5DiseaseReport/USAPatriotAct.htm. The text regarding the definition of critical infrastructure is cited as "Critical Infrastructure Defined- In this section, the term “critical infrastructure” means systems and assets, whether physical or virtual, so vital to the United States that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matter. " 1.Cf. Luiijf, Eric A. M. , Helen H. Burger, and Marieke H. A. Klaver, “Critical Infrastructure Protection in the Netherlands:A Quick-scan”. In:Gattiker, Urs E. , Pia Pedersen, amd Karsten Petersen (eds. ) . EICAR Conference Best Paper Proceedings 2003, http://cip.gmu.edu/archive/2_NetherlandsCIdefpaper_2003.pdf (last accessed at 20. 07. 2009) 2.For each chapter of relevant legal cases, please visit http://academic.udayton.edu/health/syllabi/Bioterrorism/5DiseaseReport/USAPatriotAct.htm. The text regarding the definition of critical infrastructure is cited as "Critical Infrastructure Defined- In this section, the term “critical infrastructure” means systems and assets, whether physical or virtual, so vital to the United States that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of those matter. " 3.Introduction of Consumer Protection in Taiwan , Republic of China , Consumer Protection Commission (CPC), Executive Yuan.http://www.fas.org/irp/offdocs/nspd/hspd-7.html ( Last visit 2008/6/27 )

The approaches to promote critical infrastructure protection in Japan

The approaches to promote critical infrastructure protection in Japan are illustrated below: 1. Coverage of Critical Information Infrastructure In the "Action Plan on Information Security Measures for Critical Infrastructure" promulgated by the Information Security Policy Council (ISPC) in 2005, critical infrastructure is defined as: Critical infrastructure which offers the highly irreplaceable service in a commercial way is necessary for people's normal lives and economic activities, and if the service is discontinued or the supply is deficient or not available, it will seriously influence people's lives and economic activities. Based on the definition of the action plan, the critical infrastructure contains: telecommunication systems, administration services of the government, finance, civil aviation, railway, logistics, power, gas, water, and medical services 2. Promoted Relevant Policies of The Past The issues regarding the CIIP are gradually being developed with the norm of information social security policy in Japan. Adopting the Action Plan of the Basic Guidelines Toward the Promotion of an Advanced Information and Telecommunications Society of 1998 proposed by the Japanese government in 1998 as a basis. The Japanese government keeps presenting polices of improvement for the relevant issues in order to acquire the stable development of telematics and telecommunications. Several years later, the Ministry of Economy, Trade, and Industry (METI) announced the Comprehensive Strategy on Information Security in 2003. The formulation of the strategy not only emphasizes the possible telematics-related risks and protection against threats that may be encountered in the information society, but it also enhances the level of information security to the level of national security and presents a comprehensive information security improvement program. Furthermore, the submission of the strategy has identified government’s responsibility in the development of information security Therefore, a division which is solely responsible for information security was established in the Cabinet Secretariat and is devoted to the development of it. In 2005, the Ministry of Economy, Trade, and Industry (METI) amended the Comprehensive Strategy on Information Security and announced the First National Strategy on Information Security based on the creation of a policy of a long-term information security task in Japan which is also the foundation for the policy of guidelines and action security concerning critical information infrastructure. This is in addition to being the most important basis for the policy of information security development. The strategy is different from the Comprehensive Strategy on Information Security in connotation. In the range of information security protection, it not only maintains information security from the perspective of the government; for instance, to divide the rights and duties on information security protection practices between the central government and the local government, and to strengthen the capacity of the government to solve emergencies such as cyber attacks, but it also tries to employ the public-private partnership on the CIIP issue to construct an extensive information security protection and to develop a Capability for Engineering of Protection, Technical Operation, Analysis and Response (CEPTOAR): one similar to the ISAC of America, to strengthen the information sharing and analysis of information security of all industry involved. According to the strategy, the METI established the Information Security Policy Council (ISPC) and the National Information Security Center (NISC) under the subordination of the Cabinet Secretariat in order to reach a goal of dependable society of information security.1 Finally, the information security policies more directly related with the CIIP are the Action Plan on Information Security Measures for Critical Infrastructure and the Standards for Information Security Measures for the Central Government Computer Systems, both of which regulate CI-related threats, information security standards, public-private partnership information sharing system, and the levels of information security standards between different governments and critical infrastructures, respectively. 3. Oraganization Framework Generally speaking, the Cabinet Secretariat is the main division of the CIIP and the information security for the Japanese government, while the ISPC and the NISC established under the Cabinet Secretariat in 2005 are the core organizations for the development of the CIIP policy. In addition, the National Policy Agency (NPA) and the Ministry of Internal Affairs and Communications (MIC) also played an important role in assisting the Cabinet Secretariat with critical infrastructure protection. The part of public-private partnership is covered by the CEPTOAR which takes the responsibility for information sharing and analysis of information security between the government and private organizations. 4. Notification System For critical infrastructure protection, Japan has set up a warning and notification system in addition to the emphasis on fundamental information security protection. With the concept of public-private partnership, various messages related with information security are analyzed and shared in order to prevent information security incidents from occurring. The network of notification system in Japan mainly consists of several organizations as listed below. (1) National Incident Response Team The National Incident Response Team (NIRT) which is the information security office under the Cabinet Secretariat in the organization framework belongs to the Computer Emergency Response Team (CERT)2 and is first in line in the government to handle internet emergencies. According to the Action Plan for Ensuring e-Government's IT Security, the NIRT which consists of 17 experts from the government and the private organizations is responsible to (1) accurately understand and analyze emergencies, (2) develop technical strategies to solve and rehabilitate emergencies to prevent incidents from reoccurrence, (3) provide other governmental organizations the assistance to solve the information security issue, (4) collect and analyze information or intelligence so that effective solutions and strategies may be provided when an incident happens, (5) provide the governmental organization with professional knowledge and information, and (6) enhance and improve all knowledge pertinent to information security. The Japan Computer Emergency Response Team Coordination Center (JPCERT/cc) is the first Computer Security Incident Response Team (CSIRT) established in Japan. It consists of internet service suppliers, security products/service suppliers, governmental agencies, and associations of industry & commerce. The JPCERT/CC is also a member of the Asia Pacific Computer Emergency Response Team (APCERT) and a member of the Forum of Incident Response and Security Teams (FIRST). It coordinates and integrates prevention measures pertinent to information security and is consistent with other CSIRTs. (3) Telecom Information Sharing and Analysis Center In Japan, besides the mechanism responsible to notify the government, which functions as a bridge for communication between it and all those outside of it, the mechanism of information sharing and notification is also established among industries to provide each with a channel for information exchange and consultation. In 2001, Japan established the Telecom Information Sharing and Analysis Center Japan (Telecom-ISAC Japan). In addition to real-time inspection for computer intrusion incidents and conducting information collection and analysis, the Telecom-ISAC Japan proposes to e-government many suggestions related with the Transact-SQL issue as well. The reasons for launching the Telecom-ISAC are to instantaneously detect a computer intrusion incident, and to instantaneously gather and analyze its information, and then exchange this with other telecom carriers and offer them relevant countermeasures for precaution; so that in can reach the goal of ensuring telecom security since it is an important infrastructure concerning social economy. (4) Cyber Force The reasons for launching the Cyber Force are to maintain the security to use the internet by regularly "patrolling" it, searching for evidence of internet crime, and to notify the critical infrastructure operators about any unusual internet use so as to prevent the occurrence of cyber terror attacks. The Cyber Force also assists operators to solve and diminish the damage and influences when an incident occurs. (5) Portal Site of National Police Agency The National Police Agency owns the portal site "@police". It exists to prevent large-scale cyber emergencies and to provide gathered information concerning information security to government. In addition to providing the techniques related with the safe use of computer networks, @police is also dedicated to educating internet users about the concept of information security and to increase security awareness. (6) Ministry of Economy, Trade and Industry Since 1990, the Ministry of Economy, Trade and Industry (METI) has cooperated with the JPCERT/CC and the Information Technology Promotion Agency (IPA) to provide reports on virus, intrusion, and the damage caused by them, to remind the public to pay attention. 5. Legal Norms The laws regarding critical infrastructure protection in Japan are illustrated as follows: (1) Unauthorized Computer Access Law of 1999 The Unauthorized Computer Access Law includes various conducts such as cyber intrusion, and data thefts, into the norms of criminal punishment to deter cyber crimes from spreading in order to ensure the safety of the critical information infrastructure. (2) Act on Electronic Signatures and Certification Business of 2000 With the formulation of the Act on Electronic Signatures and Certification Business, the smooth promotion of the electronic signature system is ensured and the circulation and process of electronic communication can be fostered further. (3) Basic Law on Formation of an Advanced Information and Telecommunication Network Society of 2001 Through the formulation of the Basic Law on Formation of an Advanced Information and Telecommunication Network Society, the legal basis to execute an information technology policy is enhanced, and the direction and job content for the government to execute this policy is explicitly stated. 1.http://www.nisc.go.jp/eng/pdf/national_strategy_001_eng.pdf(last accessed date: 2009/07/20). 2.http://www.nisc.go.jp/en/sisaku/h1310action.html(last accessed date: 2009/07/20).

Open Government Data in Taiwan

In the recent years, the tide of open movement has pushed vigorously from the open source software, open hardware and the recent open data. More and more countries have joined the global initiative of open government data in order to achieve the ultimate goal to promote the democratic governance. National government adopts open data policy to enhance the transparency, participation and collaboration of the citizen into the government operation. Meanwhile, fueled by the knowledge economy and the statistical analysis of the big data technology, open government data could work as the catalyst to individuals, industries and government agencies to transform data into potential knowledge-based services. Up to the end of 2013, there are around 77 countries have adopted the Open Government Data policy. Taiwanese government also declared to take part in the open data revolution. The government had officially launched the open data policy in 2012. In Resolution No. 3322, the Executive Yuan prescribes that open government data could enhance the transparency of the government; improve the quality of life of people; and meet the needs of the industry. Governmental agencies under the authority of the Executive Yuan shall to recognize the importance of the empowerment brought from open government data to the quality of the decision-making process and asked the agencies to implemented the policy from the perspectives of the user’s needs and applications, and also the consider to include machine readable format for the data. The Executive Yuan directed the Research, Development and Evaluation Commission (RDEC)(行政院研究發展考核委員會) to develop related principles and measures to support government agencies of the Executive Yuan to plan, execute and open up their data. At the same time, it also directed the Industrial Development Bureau(IDB), Ministry of Economic Affairs (MOEA) (經濟部工業局)to develop responsive strategies to cope with the industrial development. Pursuant to the Resolution No. 3322 of the Executive Yuan, RDEC worked through the open government data related laws and regulations, proclaimed the “Open Government Data Operating Principle for Agencies of the Executive Yuan”(行政院及所屬各級機關政府資料開放作業原則)and the “Essential Requirements for Administrate Open Government Data Datasets” (政府資料開放資料集管理要項)in the early 2013. All government agencies of the Executive Yuan have to adopted the following 3 open government data steps:"open up government data for public use”, “provide data free of charge subject to certain exemptions”, "automated systematic release and exchange data”, and work in with 4 open government focus strategies: “release data actively and by the priority in the field of daily necessity”, “develop the norm of open government data”, “promote the use of Data.gov.tw”, and “demonstrate and advocate open government data services”. Ministry of Economic Affairs (MOEA) (經濟部工業局)also provided grants ($9,200 NTD) to the open government data value-added applications and development. The open government data platform (data.gov.tw) was launched in July, 2013, as the official Taiwan government site providing public access and reuse of government data sets from 62 government agencies of the Executive Yuan, including the Ministry of Interior (MOI)(內政部), Ministry of Foreign Affairs (MOFA)(外交部), Ministry of Economic Affairs (MOEA)(經濟部), Council for Economic Planning and Development (CEPD)(行政院經濟建設發展委員會), Hakka Affairs Council (HAC)(客家委員會), Water Resources Agency, Ministry of Economic Affairs (WRA) (經濟部水利署), and 4 local governments. At the end of 2013, each government agency is required to release at least 55 data sets. In addition, the rising tide of private-sector (individual or enterprise) also aims to mine the gold in open government data. Act upon the National Information and Communication Initiative (NICI)(行政院國家資訊通信發展推動小組)in the consultation of the open government data policy, Taipei Computer Association (TCA)(台北市電腦同業工會)organized the “Open Data Alliance” (ODA)(Open Data聯盟)as a bridge between the information provide-side (public sectors) and the demand-side (private sectors), to communicate and coordinate the expectations and needs from communities (bottom-up) towards open government data. On Dec. 11, 2013, Taiwan took one more step in the global open data initiative. Open Data Alliance (ODA) and the Open Data Institute (ODI) in UK signed the memorandum of understanding (MOU) and announced the alliance established to promote and explore the potential opportunities of open data holds for the public, private and academic sectors. The engagement of ODA and ODI could bring another catalyst for the open movement in Taiwan to take one big step in the international community. According to a survey from ODA, the biggest challenge so far is the available data sets do not really meet the needs of the industry. And most of the feedback reflects the concerns in licensing, charge, frequency of updates, data formats and data quality. These voices echo the open government data issues encountered in many countries. There are still some obstacles with the applicable laws and regulations (for example, Charges and Fees Act, Personal Data Protection Act, Accoutability & Liability etc.) wait to be solved before both public and private sectors to go onto the next level of open data development.

The Research on Cybersecurity Risks in 5G network: Perspectives on Global strategy

The Research on Cybersecurity Risks in 5G network: Perspectives on Global strategy I. The characteristics of 5G and cybersecurity threats   Compared to 4G, 5G adopts several new designs on the network architecture, such as software-defined networking (SDN), a baseband unit (BBU), logical disjunction, network function virtualization (NFV), and multi-access edge computing (MEC), to provide users with high-speed, low-latency and other quality services, as well as flexibility and expansibility to accommodate more emerging applications.   According to the three key usage scenarios (see Figure 1) defined by the International Telecommunication Union (ITU), enhanced mobile broadband access (eMBB) provides high-volume mobile broadband services such as AR/VR or ultra-high-definition video. Massive machine type communication (mMTC) provides large-scale IoT services. Ultra-reliability and low latency communication (uRLLC) can be used for services that require low-latency and high-reliability connections, including unmanned driving and industrial automation.   However, with 5G’s open, flexible and extensible design, as well as its coexistence with other 4G and 3G systems in the early stage of commercial operation, the cybersecurity threats facing 5G networks are more severe and diverse than the past mobile phone generations. At present, the known 5G cybersecurity threats mainly come from network functional components and connection interfaces among components, including the terminal device, access network, air interface, cloud virtualization, multi-access edge computing rental, core network, back-end/backbone network, roaming and external services, and so on. Source: ITU Figure 1Three key 5G scenarios by the ITU II. Cybersecurity strategy development in major countries   5G is not only one of the critical infrastructures, but also an important foundation for pursuing a digital nation, digital economy, the industrial 4.0, and for promoting industrial transformation for upgrading. However, different scenarios require different cybersecurity protection levels, which poses great challenges to both mobile network operators and service providers.   Therefore, the construction of favorable environment for 5G development, the promotion of relevant applications and the development of innovative services and so on, have become the priority of governance in the countries around the world. 1. European Union (EU)   Then European Commission President Jean-Claude Juncker noted in 2017 that “Cyber-attacks can be more dangerous to the stability of democracies and economies than guns and tanks…Cyber-attacks know no borders and no one is immune,” indicating the EU's high priority in the cybersecurity field.   The "Digital Single Market," an important EU policy, lays the foundation for digital economy based on "cybersecurity, trust and privacy." In response to the loss of billions of euros a year in cyber attacks, the EU has taken a series of measures to safeguard and advance the development of the Digital Single Market. For the purposes of this strategy, the European Commission in 2018 came up with the policy of Resilience, Deterrence and Defence: Building strong cybersecurity for the EU,[1]with the aim of improving the level of cyber security, cyber resilience and trust in the EU, and in June 2019 passed the Cybersecurity Act [2] with two highlights described as follows: (1) Strengthen the authority of the European Union Agency for Network and Information Security (ENISA)(see Figure 2), increase the allocation of human and financial resources to ENISA, as well as the preparation for the work items related to the cybersecurity industry, and reinforce cyber security support for EU member states. (2) Establish the EU cybersecurity certification framework. [3]   In the European Union, where different cybersecurity certification schemes already exist, the absence of a common certification regime would increase the risk of fragmentation of the single market. For this reason, a set of technical requirements, standards and procedures are provided under this framework to assess whether information/communication products, services and processes are in compliance with security requirements.   The certification program includes product and service categories, information/communication security requirements (e.g. reference standards or technical specifications), types of assessment (e.g. self-assessment or third-party assessment), levels of security, and so on. All member states agree that certification not only facilitate cross-border business transactions, but also enable consumers to better understand the security of products and services. Source: Compiled from the ENISA websit Figure 2 ENISA organization and authority strengthening 2. the United States (U.S.)   In consideration of cyber security affairs in the country, the US Department of Homeland Security (DHS) in May 2018 unveiled the "Cybersecurity Strategy,"[4] which focused on the objectives and priorities of the U.S. government in future cybersecurity protection, identifying and managing national cybersecurity risks with the overall risk management approach, and addressing security threats to the country, critical infrastructures and private enterprises, as well as preventing cybercrimes.   Then the White House in September 2018 released the National Cyber Strategy of the United States of America, [5] based on the Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure [6] issued in May 2017, stating the strategy and position of the United States against the threat of cyber- attacks. The strategic goal aimed to, by safeguarding cybersecurity, protect the American people, the homeland, and the American way of life, to build a secure digital economic environment, to promote American prosperity, and strengthen cooperation with partners to deter malicious cyber attackers, so as to maintain peace and security, and continue to expand U.S. influence.   The department in July 2019 published the Digital Modernization Strategy [7] to announce its national defense strategy in the digital environment, including the use of cybersecurity, AI, cloud computing, blockchain and other technologies in information security protection to create a more secure, coordinated and efficient platform and improve the security of intelligence transmission and processing. 3. Canada   Public Safety Canada in June 2018 released the National Cyber Security Strategy, [8] with the vision of a sustainable, robust cybersecurity environment, innovation and prosperity. Through international cooperation and a domestic public-private partnership, the department has been working on three goals: 1. cyber security and resilience (to reduce cybercrime and ensure Internet privacy; 2. Internet innovation (to create a friendly environment for the development of cybersecurity startups); 3. government leadership and cooperation (to transfer government-owned cybersecurity knowledge to the private sector and set up a cybersecurity governance framework).   The Canadian government also attaches great importance to critical infrastructure. In May 2018, the National Cross Sector Forum 2018-2020 Action Plan for Critical Infrastructure [9] was unveiled to facilitate information sharing between public and private partners through sharing and protecting intelligence, and implementing a full risk management approach. Moreover, Public Safety Canada in April 2019 issued a report called Enhancing Canada’s Critical Infrastructure Resilience to Insider Risk, which provided guidelines and suggestions for action on internal risks in critical infrastructure organizations.[10] 4. Singapore   The government of Singapore in 2018 promulgated the Cybersecurity Act, [11] which aimed to fulfill the vision of a Smart Nation by enacting and putting into effect cybersecurity regulations to achieve the goal of a resilient infrastructure and a more secure cyberspace, and to strengthen the protection of critical information infrastructure against cyber-attacks. The Cyber Security Agency of Singapore (CSA) was given the authority to prevent and respond to cybersecurity threats, and to set up a system for sharing security information, as well as a light-touch licensing system for cybersecurity service providers.[12]   The Government of Singapore has appointed a Commissioner of Cybersecurity responsible for promoting domestic cybersecurity policy. To safeguard Singaporeans from cybersecurity threats, [13] the government particularly laid down cybersecurity threat or incident response provisions in Chapter 4 of the Cybersecurity Act to empower the Commissioner of Cybersecurity to investigate cybersecurity threats and incidents, such as requiring the parties to the incidents to present statements in person or in writing, producing documents or provide information and so on.[14] 5. Australia   The Australian government in 2016 proposed a four-year "Australia's Cyber Security Strategy,"[15] which was expected to invest more than 230 million Australian dollars to strengthen Australia's cyber security capability and complete the following five aspects: national cyber partnership, strong cyber defenses, global responsibility and influence, growth and innovation, and a cyber smart nation.   As for the global responsibility and influence, the Australian government in 2017 announced the "Australia's International Cyber Engagement Strategy."[16] which aims to strengthen digital trade, to improve cybersecurity and to response to cybercrime through international cooperation; encourage innovative cybersecurity solutions; provide security advice and best practices, such as Essential Eight strategies[17] to mitigate cyber-attacks; establish the Pacific Cyber Security Operational Network (PaCSON) [18] with neighboring countries to develop regional cybersecurity capabilities; and advance the development of Australia's cybersecurity industry, nurture startups and attract foreign investment. III. Cybersecurity strategy to promote 5G in Taiwan   Since President Tsai Ing-wen took office in 2016, she declared that cybersecurity is directly linked to national security. In 2017, the Department of Cyber Security (DCS) under the Executive Yuan issued "National Cybersecurity Development Plan (2017-2020)," and in 2018 the "Cybersecurity Industry Development Action Plan (2018-2025)," in order to enhance the independence of Taiwan's cybersecurity industry, consolidate the nation’s cybersecurity defense line, improve its innovative thinking of cyber security, and further promote it to the international market.   To develop a favorable environment to promote 5G, the Executive Yuan on May 10, 2019 approved the “Taiwan 5G Action Plan (2019-2022),” [19] with a total investment about NT$20.466 billion over a four-year period. The plan aims to build a 5G application and industrial innovation environment, and reshape Taiwan's mobile communication industry ecosystem, with its content planned around five themes, including "promoting 5G vertical application field demonstration", "building 5G innovation and application development environment," "completing 5G technology core and cybersecurity protection capabilities," "planning to release 5G frequency spectrums in line with overall interests" and "adjusting laws and regulations to create favorable environment for 5G development," and to promote industrial upgrading and transformation, as well as create the next wave of economic prosperity in Taiwan.   Secure, robust and reliable 5G systems are sufficient and requisite conditions for building an innovation ecosystem in digital countries. The third theme of the "Taiwan 5G Action Plan" is to "complete 5G technology core and cybersecurity protection capabilities," which is intended to advance the integration of applied science and technology by establishing advantageous core technologies, set up a 5G technology and test platform, and increase the market competitiveness of 5G industry, while drafting the overall national policies on 5G cybersecurity, building the cybersecurity protection mechanism of 5G homemade products, strengthening 5G critical infrastructure and operational cybersecurity protection capabilities, and promoting domestic suppliers to enter the international 5G reliable supply chain.   In terms of strengthening 5G critical infrastructure and operational cybersecurity protection capacities, the NCC has planned a four-year (2019-2022) "5G Network Cybersecurity Protection and Related Regulations Preparation Plan." In coordination with a 5G license issue in 2020, the agency in 2019 added/amended the 5G cybersecurity provisions of the Regulations for Administration of Mobile Broadband Businesses, making it mandatory for the winning bidder of the 5G frequency spectrum to incorporate the cybersecurity protection concept into the system design for system construction.   Upon commercial operation of 5G, the NCC will audit from time to time the implementation of the cybersecurity maintenance plan by telecom operators, so as to ensure and reinforce the cybersecurity protection system of Taiwan's 5G telecom network, and create an opportunity for the development of 5G homemade products with cybersecurity protection capability. In addition, the NCC will also face up to the fact that 5G technology standards continue to evolve, and the operators have different construction schedules and heterogeneous mobile networks coexist. Therefore, relevant regulations will continue to be completed from 2020 to 2022, and examples will be verified through cybersecurity function testing laboratories to ensure that cybersecurity protection functions of 5G networks keep pace with the times. IV. Conclusion and Suggestion   As for emerging technologies, countries around the world are actively evaluating and constructing 5G systems and services. Taiwan boasts excellent industrial advantages in terms of semiconductors, ICT software and hardware, and high-quality talents, and thus makes a foundation for developing 5G. Furthermore, going with the importance of cybersecurity, it is necessary to pay more attention to planning and developing 5G cybersecurity technology.   It is clear that the development of cybersecurity is both a challenge and an opportunity for Taiwan. In order to implement the national policy objectives of "cybersecurity is national security" as well as "innovative economic development programs for a digital nation," and to response to the scientific and technological progress, and the demand for cybersecurity, key development direction is proposed to expedite the establishment of 5G cybersecurity protection. Reference: [1]Resilience, Deterrence and Defence: Building strong cybersecurity in Europe, European Commission, https://ec.europa.eu/digital-single-market/en/news/resilience-deterrence-and-defence-building-strong-cybersecurity-europe [2]The draft Regulation of The European Parliament And of The Council on ENISA, the "EU Cybersecurity Agency", and repealing Regulation(EU)526/2013, and on Information and Communication Technology cybersecurity certification(''Cybersecurity Act'') was published in September 2017 to expand the rights and obligations of ENISA, which would make ENISA the EU's cybersecurity and information competent authority and the authority for critical infrastructure (information) facilities after the passage of the Act. Regulation (EU) 2019/881 of the European Parliament and of the Council of 17 April 2019 on ENISA (the European Union Agency for Cybersecurity) and on information and communications technology cybersecurity certification and repealing Regulation (EU) No 526/2013 (Cybersecurity Act) (Text with EEA relevance), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2019.151.01.0015.01.ENG&toc=OJ:L:2019:151:TOC [3]The EU cybersecurity certification framework, European Commission, https://ec.europa.eu/digital-single-market/en/eu-cybersecurity-certification-framework [4]Cybersecurity Strategy(2018), DHS, https://www.dhs.gov/sites/default/files/publications/DHS-Cybersecurity-Strategy_1.pdf [5]National Cyber Strategy of the United States of America(2018), The White House, https://www.whitehouse.gov/wp-content/uploads/2018/09/National-Cyber-Strategy.pdf [6]THE WHITE HOUSE, Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure, The White House, https://www.whitehouse.gov/presidential-actions/presidential-executive-order-strengthening-cybersecurity-federal-networks-critical-infrastructure/ [7]DoD Digital Modernization Strategy, DoD, https://media.defense.gov/2019/Jul/12/2002156622/-1/-1/1/DOD-DIGITAL-MODERNIZATION-STRATEGY-2019.PDF [8]National Cybersecurity Strategy, Public Safety Canada, https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ntnl-cbr-scrt-strtg/index-en.aspx [9]National Cross Sector Forum 2018-2020 Action Plan for Critical Infrastructure, Public Safety Canada, Public Safety Canada, https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/pln-crtcl-nfrstrctr-2018-20/index-en.aspx#a02 The action plan is a three-year program under Canada's2010 National Strategy for Critical Infrastructure (National Strategy) starting in 2010 for all phases. [10]Enhancing Canada’s Critical Infrastructure Resilience to Insider Risk, Public Safety Canada, Public Safety Canada, https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/nhncng-crtcl-nfrstrctr/index-en.aspx [11]Cybersecurity Act 2018, Singapore Statutes Online, https://sso.agc.gov.sg/Acts-Supp/9-2018/ [12]Cybersecurity Act, CSA, https://www.csa.gov.sg/legislation/cybersecurity-act [13]Id. [14]Cybersecurity Act Explanatory Statement, https://www.csa.gov.sg/~/media/csa/cybersecurity_bill/cybersecurity%20act%20-%20explanatory%20statement.pdf [15]Australia’s Cybersecurity Strategy, https://cybersecuritystrategy.homeaffairs.gov.au/ What is the Government doing in cybersecurity, Ministers for the Department of Industry, Innovation and Science, https://www.industry.gov.au/data-and-publications/australias-tech-future/cyber-security/what-is-the-government-doing-in-cyber-security [16]Australia’s International Cyber Engagement Strategy, Department of Foreign Affairs and Trade,https://www.dfat.gov.au/sites/default/files/DFAT%20AICES_AccPDF.pdf [17]Essential Eight Explained, ACSC, https://www.cyber.gov.au/publications/essential-eight-explained [18]Pacific Cybersecurity Operational Network(PaCSON), https://dfat.gov.au/international-relations/themes/cyber-affairs/cyber-cooperation-program/Pages/pacific-cyber-security-operational-network-pacson.aspx Or Strengthening cybersecurity across the Pacific, ACSC, https://www.cyber.gov.au/news/pacific-islands PaCSON is comprised of 15 members, including Australia, Fiji, Marshall Islands, New Zealand, Papua New Guinea, Samoa, and Solomon Islands. [19]Taiwan 5G Action Plan, Executive Yuan,https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/087b4ed8-8c79-49f2-90c3-6fb22d740488

TOP